Ashton N. Jorgensen , Chowdhury S. Abdullah , Md. Shenuarin Bhuiyan , Megan Watt , Paari Dominic , Gopi K. Kolluru , Christopher G. Kevil , Hyung W. Nam
{"title":"Neurogranin regulates calcium-dependent cardiac hypertrophy","authors":"Ashton N. Jorgensen , Chowdhury S. Abdullah , Md. Shenuarin Bhuiyan , Megan Watt , Paari Dominic , Gopi K. Kolluru , Christopher G. Kevil , Hyung W. Nam","doi":"10.1016/j.yexmp.2022.104815","DOIUrl":null,"url":null,"abstract":"<div><p>Intracellular Ca<sup>2+</sup>-calmodulin (CaM) signaling plays an important role in Ca<sup>2+</sup><span><span>-CaM-dependent kinase (CaMKII) and calcineurin (CaN)-mediated cardiac biology. While </span>neurogranin (Ng) is known as a major Ca</span><sup>2+</sup><span>-CaM modulator in the brain, its pathophysiological role in cardiac hypertrophy has never been studied before. In the present study, we report that Ng is expressed in the heart and depletion of Ng dysregulates Ca</span><sup>2+</sup><span><span> homeostasis and promotes cardiac failure in mice. 10-month-old Ng </span>null mice demonstrate significantly increased heart-to-body weight ratios compared to wild-type. Using histological approaches, we identified that depletion of Ng increases cardiac hypertrophy, fibrosis, and collagen deposition near perivascular areas in the heart tissue of Ng null mice. Ca</span><sup>2+</sup><span> spark experiments revealed that cardiac myocytes isolated from Ng null mice have decreased spark frequency and width, while the duration of sparks is significantly increased. We also identified that a lack of Ng increases CaMKII</span><sub>δ</sub><span> signaling and periostin<span> protein expression in these mouse hearts. Overall, we are the first study to explore how Ng expression in the heart plays an important role in Ca</span></span><sup>2+</sup><span> homeostasis in cardiac myocytes as well as the pathophysiology of cardiac hypertrophy and fibrosis.</span></p></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"127 ","pages":"Article 104815"},"PeriodicalIF":2.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480022000788","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Intracellular Ca2+-calmodulin (CaM) signaling plays an important role in Ca2+-CaM-dependent kinase (CaMKII) and calcineurin (CaN)-mediated cardiac biology. While neurogranin (Ng) is known as a major Ca2+-CaM modulator in the brain, its pathophysiological role in cardiac hypertrophy has never been studied before. In the present study, we report that Ng is expressed in the heart and depletion of Ng dysregulates Ca2+ homeostasis and promotes cardiac failure in mice. 10-month-old Ng null mice demonstrate significantly increased heart-to-body weight ratios compared to wild-type. Using histological approaches, we identified that depletion of Ng increases cardiac hypertrophy, fibrosis, and collagen deposition near perivascular areas in the heart tissue of Ng null mice. Ca2+ spark experiments revealed that cardiac myocytes isolated from Ng null mice have decreased spark frequency and width, while the duration of sparks is significantly increased. We also identified that a lack of Ng increases CaMKIIδ signaling and periostin protein expression in these mouse hearts. Overall, we are the first study to explore how Ng expression in the heart plays an important role in Ca2+ homeostasis in cardiac myocytes as well as the pathophysiology of cardiac hypertrophy and fibrosis.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.