Benjamin Sanchez, Sandra Ferraro, Audrey Josset-Lamaugarny, Aurélie Pagnon, Charlie K Hee, Lauren Nakab, Dominique Sigaudo-Roussel, Bérengère Fromy
{"title":"Skin Cell and Tissue Responses to Cross-Linked Hyaluronic Acid in Low-Grade Inflammatory Conditions.","authors":"Benjamin Sanchez, Sandra Ferraro, Audrey Josset-Lamaugarny, Aurélie Pagnon, Charlie K Hee, Lauren Nakab, Dominique Sigaudo-Roussel, Bérengère Fromy","doi":"10.1155/2023/3001080","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronic acid (HA), used in a variety of medical applications, is associated in rare instances to long-term adverse effects. Although the aetiology of these events is unknown, a number of hypotheses have been proposed, including low molecular weight of HA (LMW-HA) in the filler products. We hypothesized that cross-linked HA and its degradation products, in a low-grade inflammatory microenvironment, could impact immune responses that could affect cell behaviours in the dermis. Using two different cross-linking technologies VYC-15L and HYC-24L+, and their hyaluronidase-induced degradation products, we observed for nondegraded HA, VYC-15L and HYC-24L+, a moderate and transient increase in IL-1<i>β</i>, TNF-<i>α</i> in M1 macrophages under low-grade inflammatory conditions. Endothelial cells and fibroblasts were preconditioned using inflammatory medium produced by M1 macrophages. 24 h after LMW-HA fragments and HA stimulation, no cytokine was released in these preconditioned cells. To further characterize HA responses, we used a novel <i>in vivo</i> murine model exhibiting a systemic low-grade inflammatory phenotype. The intradermal injection of VYC-15L and its degradation products induced an inflammation and cell infiltration into the skin that was more pronounced than those by HYC-24L+. This acute cutaneous inflammation was likely due to mechanical effects due to filler injection and tissue integration rather than its biological effects on inflammation. VYC-15L and its degradation product potentiated microvascular response to acetylcholine in the presence of a low-grade inflammation. The different responses with 2D cell models and mouse model using the two tested cross-linking HA technologies showed the importance to use integrative complex model to better understand the effects of HA products according to inflammatory state.</p>","PeriodicalId":14004,"journal":{"name":"International Journal of Inflammation","volume":"2023 ","pages":"3001080"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inflammation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3001080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyaluronic acid (HA), used in a variety of medical applications, is associated in rare instances to long-term adverse effects. Although the aetiology of these events is unknown, a number of hypotheses have been proposed, including low molecular weight of HA (LMW-HA) in the filler products. We hypothesized that cross-linked HA and its degradation products, in a low-grade inflammatory microenvironment, could impact immune responses that could affect cell behaviours in the dermis. Using two different cross-linking technologies VYC-15L and HYC-24L+, and their hyaluronidase-induced degradation products, we observed for nondegraded HA, VYC-15L and HYC-24L+, a moderate and transient increase in IL-1β, TNF-α in M1 macrophages under low-grade inflammatory conditions. Endothelial cells and fibroblasts were preconditioned using inflammatory medium produced by M1 macrophages. 24 h after LMW-HA fragments and HA stimulation, no cytokine was released in these preconditioned cells. To further characterize HA responses, we used a novel in vivo murine model exhibiting a systemic low-grade inflammatory phenotype. The intradermal injection of VYC-15L and its degradation products induced an inflammation and cell infiltration into the skin that was more pronounced than those by HYC-24L+. This acute cutaneous inflammation was likely due to mechanical effects due to filler injection and tissue integration rather than its biological effects on inflammation. VYC-15L and its degradation product potentiated microvascular response to acetylcholine in the presence of a low-grade inflammation. The different responses with 2D cell models and mouse model using the two tested cross-linking HA technologies showed the importance to use integrative complex model to better understand the effects of HA products according to inflammatory state.