VIRify: An integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models.

IF 4.3 2区 生物学
PLoS Computational Biology Pub Date : 2023-08-28 eCollection Date: 2023-08-01 DOI:10.1371/journal.pcbi.1011422
Guillermo Rangel-Pineros, Alexandre Almeida, Martin Beracochea, Ekaterina Sakharova, Manja Marz, Alejandro Reyes Muñoz, Martin Hölzer, Robert D Finn
{"title":"VIRify: An integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models.","authors":"Guillermo Rangel-Pineros, Alexandre Almeida, Martin Beracochea, Ekaterina Sakharova, Manja Marz, Alejandro Reyes Muñoz, Martin Hölzer, Robert D Finn","doi":"10.1371/journal.pcbi.1011422","DOIUrl":null,"url":null,"abstract":"<p><p>The study of viral communities has revealed the enormous diversity and impact these biological entities have on various ecosystems. These observations have sparked widespread interest in developing computational strategies that support the comprehensive characterisation of viral communities based on sequencing data. Here we introduce VIRify, a new computational pipeline designed to provide a user-friendly and accurate functional and taxonomic characterisation of viral communities. VIRify identifies viral contigs and prophages from metagenomic assemblies and annotates them using a collection of viral profile hidden Markov models (HMMs). These include our manually-curated profile HMMs, which serve as specific taxonomic markers for a wide range of prokaryotic and eukaryotic viral taxa and are thus used to reliably classify viral contigs. We tested VIRify on assemblies from two microbial mock communities, a large metagenomics study, and a collection of publicly available viral genomic sequences from the human gut. The results showed that VIRify could identify sequences from both prokaryotic and eukaryotic viruses, and provided taxonomic classifications from the genus to the family rank with an average accuracy of 86.6%. In addition, VIRify allowed the detection and taxonomic classification of a range of prokaryotic and eukaryotic viruses present in 243 marine metagenomic assemblies. Finally, the use of VIRify led to a large expansion in the number of taxonomically classified human gut viral sequences and the improvement of outdated and shallow taxonomic classifications. Overall, we demonstrate that VIRify is a novel and powerful resource that offers an enhanced capability to detect a broad range of viral contigs and taxonomically classify them.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 8","pages":"e1011422"},"PeriodicalIF":4.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011422","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of viral communities has revealed the enormous diversity and impact these biological entities have on various ecosystems. These observations have sparked widespread interest in developing computational strategies that support the comprehensive characterisation of viral communities based on sequencing data. Here we introduce VIRify, a new computational pipeline designed to provide a user-friendly and accurate functional and taxonomic characterisation of viral communities. VIRify identifies viral contigs and prophages from metagenomic assemblies and annotates them using a collection of viral profile hidden Markov models (HMMs). These include our manually-curated profile HMMs, which serve as specific taxonomic markers for a wide range of prokaryotic and eukaryotic viral taxa and are thus used to reliably classify viral contigs. We tested VIRify on assemblies from two microbial mock communities, a large metagenomics study, and a collection of publicly available viral genomic sequences from the human gut. The results showed that VIRify could identify sequences from both prokaryotic and eukaryotic viruses, and provided taxonomic classifications from the genus to the family rank with an average accuracy of 86.6%. In addition, VIRify allowed the detection and taxonomic classification of a range of prokaryotic and eukaryotic viruses present in 243 marine metagenomic assemblies. Finally, the use of VIRify led to a large expansion in the number of taxonomically classified human gut viral sequences and the improvement of outdated and shallow taxonomic classifications. Overall, we demonstrate that VIRify is a novel and powerful resource that offers an enhanced capability to detect a broad range of viral contigs and taxonomically classify them.

Abstract Image

Abstract Image

Abstract Image

VIRify:一个使用病毒特异性蛋白质图谱隐马尔可夫模型的综合检测、注释和分类管道。
对病毒群落的研究揭示了这些生物实体对各种生态系统的巨大多样性和影响。这些观察结果引发了人们对开发计算策略的广泛兴趣,这些策略支持基于测序数据的病毒群落的全面表征。在这里,我们介绍了VIRify,这是一种新的计算管道,旨在提供用户友好、准确的病毒群落功能和分类特征。VIRify从宏基因组组装中识别病毒重叠群和原噬菌体,并使用病毒图谱隐藏马尔可夫模型(HMM)对其进行注释。其中包括我们手动策划的HMM图谱,它作为广泛的原核和真核病毒分类群的特定分类标记,因此用于可靠地对病毒重叠群进行分类。我们在两个微生物模拟群落的组装体、一项大型宏基因组学研究和一组来自人类肠道的公开可用病毒基因组序列上测试了VIRify。结果表明,VIRify可以识别原核病毒和真核病毒的序列,并提供从属到科的分类,平均准确率为86.6%。此外,VIRify还可以检测和分类243个海洋宏基因组组件中存在的一系列原核病毒或真核病毒。最后,VIRify的使用导致了分类上分类的人类肠道病毒序列数量的大幅增加,并改进了过时和肤浅的分类。总的来说,我们证明了VIRify是一种新颖而强大的资源,它提供了检测广泛病毒重叠群并对其进行分类的增强能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信