James McCord, Joseph Gibbs, Michael Hudson, Michele Moyer, Gordon Jacobsen, Gillian Murtagh, Richard Nowak
{"title":"Machine Learning to Assess for Acute Myocardial Infarction Within 30 Minutes.","authors":"James McCord, Joseph Gibbs, Michael Hudson, Michele Moyer, Gordon Jacobsen, Gillian Murtagh, Richard Nowak","doi":"10.1097/HPC.0000000000000281","DOIUrl":null,"url":null,"abstract":"<p><p>Variations in high-sensitivity cardiac troponin I by age and sex along with various sampling times can make the evaluation for acute myocardial infarction (AMI) challenging. Machine learning integrates these variables to allow a more accurate evaluation for possible AMI. The goal was to test the diagnostic and prognostic utility of a machine learning algorithm in the evaluation of possible AMI. We applied a machine learning algorithm (myocardial-ischemic-injury-index [MI3]) that incorporates age, sex, and high-sensitivity cardiac troponin I levels at time 0 and 30 minutes in 529 patients evaluated for possible AMI in a single urban emergency department. MI3 generates an index value from 0 to 100 reflecting the likelihood of AMI. Patients were followed at 30-45 days for major adverse cardiac events (MACEs). There were 42 (7.9%) patients that had an AMI. Patients were divided into 3 groups by the MI3 score: low-risk (≤ 3.13), intermediate-risk (> 3.13-51.0), and high-risk (> 51.0). The sensitivity for AMI was 100% with a MI3 value ≤ 3.13 and 353 (67%) ruled-out for AMI at 30 minutes. At 30-45 days, there were 2 (0.6%) MACEs (2 noncardiac deaths) in the low-risk group, in the intermediate-risk group 4 (3.0%) MACEs (3 AMIs, 1 cardiac death), and in the high-risk group 4 (9.1%) MACEs (4 AMIs, 2 cardiac deaths). The MI3 algorithm had 100% sensitivity for AMI at 30 minutes and identified a low-risk cohort who may be considered for early discharge.</p>","PeriodicalId":35914,"journal":{"name":"Critical Pathways in Cardiology","volume":"21 2","pages":"67-72"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Pathways in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/HPC.0000000000000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Variations in high-sensitivity cardiac troponin I by age and sex along with various sampling times can make the evaluation for acute myocardial infarction (AMI) challenging. Machine learning integrates these variables to allow a more accurate evaluation for possible AMI. The goal was to test the diagnostic and prognostic utility of a machine learning algorithm in the evaluation of possible AMI. We applied a machine learning algorithm (myocardial-ischemic-injury-index [MI3]) that incorporates age, sex, and high-sensitivity cardiac troponin I levels at time 0 and 30 minutes in 529 patients evaluated for possible AMI in a single urban emergency department. MI3 generates an index value from 0 to 100 reflecting the likelihood of AMI. Patients were followed at 30-45 days for major adverse cardiac events (MACEs). There were 42 (7.9%) patients that had an AMI. Patients were divided into 3 groups by the MI3 score: low-risk (≤ 3.13), intermediate-risk (> 3.13-51.0), and high-risk (> 51.0). The sensitivity for AMI was 100% with a MI3 value ≤ 3.13 and 353 (67%) ruled-out for AMI at 30 minutes. At 30-45 days, there were 2 (0.6%) MACEs (2 noncardiac deaths) in the low-risk group, in the intermediate-risk group 4 (3.0%) MACEs (3 AMIs, 1 cardiac death), and in the high-risk group 4 (9.1%) MACEs (4 AMIs, 2 cardiac deaths). The MI3 algorithm had 100% sensitivity for AMI at 30 minutes and identified a low-risk cohort who may be considered for early discharge.
期刊介绍:
Critical Pathways in Cardiology provides a single source for the diagnostic and therapeutic protocols in use at hospitals worldwide for patients with cardiac disorders. The Journal presents critical pathways for specific diagnoses—complete with evidence-based rationales—and also publishes studies of these protocols" effectiveness.