Ke Liu, Mingzhao Yang, Xin Xing, Zhuliang Yu, Wei Wu
{"title":"SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification.","authors":"Ke Liu, Mingzhao Yang, Xin Xing, Zhuliang Yu, Wei Wu","doi":"10.1088/1741-2552/acf7f4","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Motor imagery (MI) is widely used in brain-computer interfaces (BCIs). However, the decode of MI-EEG using convolutional neural networks (CNNs) remains a challenge due to individual variability.<i>Approach.</i>We propose a fully end-to-end CNN called SincMSNet to address this issue. SincMSNet employs the Sinc filter to extract subject-specific frequency band information and utilizes mixed-depth convolution to extract multi-scale temporal information for each band. It then applies a spatial convolutional block to extract spatial features and uses a temporal log-variance block to obtain classification features. The model of SincMSNet is trained under the joint supervision of cross-entropy and center loss to achieve inter-class separable and intra-class compact representations of EEG signals.<i>Main results.</i>We evaluated the performance of SincMSNet on the BCIC-IV-2a (four-class) and OpenBMI (two-class) datasets. SincMSNet achieves impressive results, surpassing benchmark methods. In four-class and two-class inter-session analysis, it achieves average accuracies of 80.70% and 71.50% respectively. In four-class and two-class single-session analysis, it achieves average accuracies of 84.69% and 76.99% respectively. Additionally, visualizations of the learned band-pass filter bands by Sinc filters demonstrate the network's ability to extract subject-specific frequency band information from EEG.<i>Significance.</i>This study highlights the potential of SincMSNet in improving the performance of MI-EEG decoding and designing more robust MI-BCIs. The source code for SincMSNet can be found at:https://github.com/Want2Vanish/SincMSNet.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acf7f4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Motor imagery (MI) is widely used in brain-computer interfaces (BCIs). However, the decode of MI-EEG using convolutional neural networks (CNNs) remains a challenge due to individual variability.Approach.We propose a fully end-to-end CNN called SincMSNet to address this issue. SincMSNet employs the Sinc filter to extract subject-specific frequency band information and utilizes mixed-depth convolution to extract multi-scale temporal information for each band. It then applies a spatial convolutional block to extract spatial features and uses a temporal log-variance block to obtain classification features. The model of SincMSNet is trained under the joint supervision of cross-entropy and center loss to achieve inter-class separable and intra-class compact representations of EEG signals.Main results.We evaluated the performance of SincMSNet on the BCIC-IV-2a (four-class) and OpenBMI (two-class) datasets. SincMSNet achieves impressive results, surpassing benchmark methods. In four-class and two-class inter-session analysis, it achieves average accuracies of 80.70% and 71.50% respectively. In four-class and two-class single-session analysis, it achieves average accuracies of 84.69% and 76.99% respectively. Additionally, visualizations of the learned band-pass filter bands by Sinc filters demonstrate the network's ability to extract subject-specific frequency band information from EEG.Significance.This study highlights the potential of SincMSNet in improving the performance of MI-EEG decoding and designing more robust MI-BCIs. The source code for SincMSNet can be found at:https://github.com/Want2Vanish/SincMSNet.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.