Neural network-assisted single-molecule localization microscopy with a weak-affinity protein tag.

IF 2.4 Q3 BIOPHYSICS
Soohyen Jang, Kaarjel K Narayanasamy, Johanna V Rahm, Alon Saguy, Julian Kompa, Marina S Dietz, Kai Johnsson, Yoav Shechtman, Mike Heilemann
{"title":"Neural network-assisted single-molecule localization microscopy with a weak-affinity protein tag.","authors":"Soohyen Jang,&nbsp;Kaarjel K Narayanasamy,&nbsp;Johanna V Rahm,&nbsp;Alon Saguy,&nbsp;Julian Kompa,&nbsp;Marina S Dietz,&nbsp;Kai Johnsson,&nbsp;Yoav Shechtman,&nbsp;Mike Heilemann","doi":"10.1016/j.bpr.2023.100123","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule localization microscopy achieves nanometer spatial resolution by localizing single fluorophores separated in space and time. A major challenge of single-molecule localization microscopy is the long acquisition time, leading to low throughput, as well as to a poor temporal resolution that limits its use to visualize the dynamics of cellular structures in live cells. Another challenge is photobleaching, which reduces information density over time and limits throughput and the available observation time in live-cell applications. To address both challenges, we combine two concepts: first, we integrate the neural network DeepSTORM to predict super-resolution images from high-density imaging data, which increases acquisition speed. Second, we employ a direct protein label, HaloTag7, in combination with exchangeable ligands (xHTLs), for fluorescence labeling. This labeling method bypasses photobleaching by providing a constant signal over time and is compatible with live-cell imaging. The combination of both a neural network and a weak-affinity protein label reduced the acquisition time up to ∼25-fold. Furthermore, we demonstrate live-cell imaging with increased temporal resolution, and capture the dynamics of the endoplasmic reticulum over extended time without signal loss.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2023.100123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-molecule localization microscopy achieves nanometer spatial resolution by localizing single fluorophores separated in space and time. A major challenge of single-molecule localization microscopy is the long acquisition time, leading to low throughput, as well as to a poor temporal resolution that limits its use to visualize the dynamics of cellular structures in live cells. Another challenge is photobleaching, which reduces information density over time and limits throughput and the available observation time in live-cell applications. To address both challenges, we combine two concepts: first, we integrate the neural network DeepSTORM to predict super-resolution images from high-density imaging data, which increases acquisition speed. Second, we employ a direct protein label, HaloTag7, in combination with exchangeable ligands (xHTLs), for fluorescence labeling. This labeling method bypasses photobleaching by providing a constant signal over time and is compatible with live-cell imaging. The combination of both a neural network and a weak-affinity protein label reduced the acquisition time up to ∼25-fold. Furthermore, we demonstrate live-cell imaging with increased temporal resolution, and capture the dynamics of the endoplasmic reticulum over extended time without signal loss.

Abstract Image

Abstract Image

Abstract Image

带有弱亲和蛋白标签的神经网络辅助单分子定位显微镜。
单分子定位显微镜通过定位在空间和时间上分离的单个荧光团来实现纳米级的空间分辨率。单分子定位显微镜的一个主要挑战是采集时间长,导致低通量,以及时间分辨率差,限制了其在活细胞中可视化细胞结构动态的使用。另一个挑战是光漂白,它会随着时间的推移降低信息密度,限制活细胞应用中的吞吐量和可用观察时间。为了解决这两个挑战,我们结合了两个概念:首先,我们集成了DeepSTORM神经网络,从高密度成像数据中预测超分辨率图像,从而提高了采集速度。其次,我们采用直接蛋白标记HaloTag7,结合可交换配体(xHTLs)进行荧光标记。这种标记方法通过提供随时间变化的恒定信号而绕过光漂白,并且与活细胞成像兼容。神经网络和弱亲和蛋白标签的结合将采集时间减少了25倍。此外,我们展示了活细胞成像与增加的时间分辨率,并捕获动态的内质网在延长的时间没有信号损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信