{"title":"Inhibition of mitochondrial fission and protein kinase R improves progesterone in placental stress.","authors":"Umut Kerem Kolac","doi":"10.1530/JME-23-0059","DOIUrl":null,"url":null,"abstract":"<p><p>Placenta synthesizes hormones that play a vital role in adapting maternal physiology and supporting fetal growth. This study aimed to explore the link between progesterone, a key steroid hormone produced by placenta, and mitochondrial fission and protein kinase R through the use of chemical inhibition in trophoblasts subjected to endotoxin lipopolysaccharide and double-stranded RNA analog polyinosinic:polycytidylic acid stress. Expressions of protein kinase R, dynamin-related protein 1, mitochondrial fission protein 1, and heat shock protein 60 were determined by applying lipopolysaccharide and polyinosinic:polycytidylic acid to BeWo trophoblast cells. Next, cells were treated with protein kinase R inhibitor 2-aminopurine and mitochondrial division inhibitor 1 to examine changes in progesterone levels and expression levels of proteins and mRNAs involved in progesterone biosynthesis. Last, effect of 2-aminopurine on mitochondrial fission was determined by immunoblotting and quantitative PCR (qPCR). Mitochondrial structural changes were also examined by transmission electron microscopy. Lipopolysaccharide and polyinosinic:polycytidylic acid stimulation induced mitochondrial fission and activated protein kinase R but decreased heat shock protein 60 levels and progesterone synthesis. Chemical inhibition of mitochondrial fission elevated progesterone synthesis and protein and mRNA levels of genes involved in progesterone biosynthesis. Inhibition of protein kinase R with 2-aminopurine prevented lipopolysaccharide and polyinosinic:polycytidylic acid induced mitochondrial fission and increased progesterone biosynthesis. Use of chemical inhibitors to treat placental stress caused by pathogens has potential to stabilize the production of progesterone. The study reveals that inhibiting mitochondrial fragmentation and reducing activity of stress kinase protein kinase R in syncytiotrophoblasts leads to an increase in progesterone synthesis when exposed to lipopolysaccharide and polyinosinic:polycytidylic acid.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"71 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-23-0059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Placenta synthesizes hormones that play a vital role in adapting maternal physiology and supporting fetal growth. This study aimed to explore the link between progesterone, a key steroid hormone produced by placenta, and mitochondrial fission and protein kinase R through the use of chemical inhibition in trophoblasts subjected to endotoxin lipopolysaccharide and double-stranded RNA analog polyinosinic:polycytidylic acid stress. Expressions of protein kinase R, dynamin-related protein 1, mitochondrial fission protein 1, and heat shock protein 60 were determined by applying lipopolysaccharide and polyinosinic:polycytidylic acid to BeWo trophoblast cells. Next, cells were treated with protein kinase R inhibitor 2-aminopurine and mitochondrial division inhibitor 1 to examine changes in progesterone levels and expression levels of proteins and mRNAs involved in progesterone biosynthesis. Last, effect of 2-aminopurine on mitochondrial fission was determined by immunoblotting and quantitative PCR (qPCR). Mitochondrial structural changes were also examined by transmission electron microscopy. Lipopolysaccharide and polyinosinic:polycytidylic acid stimulation induced mitochondrial fission and activated protein kinase R but decreased heat shock protein 60 levels and progesterone synthesis. Chemical inhibition of mitochondrial fission elevated progesterone synthesis and protein and mRNA levels of genes involved in progesterone biosynthesis. Inhibition of protein kinase R with 2-aminopurine prevented lipopolysaccharide and polyinosinic:polycytidylic acid induced mitochondrial fission and increased progesterone biosynthesis. Use of chemical inhibitors to treat placental stress caused by pathogens has potential to stabilize the production of progesterone. The study reveals that inhibiting mitochondrial fragmentation and reducing activity of stress kinase protein kinase R in syncytiotrophoblasts leads to an increase in progesterone synthesis when exposed to lipopolysaccharide and polyinosinic:polycytidylic acid.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.