Giada Cucciolini, Virginia Motroni, Marek Czosnyka
{"title":"Intracranial pressure for clinicians: it is not just a number.","authors":"Giada Cucciolini, Virginia Motroni, Marek Czosnyka","doi":"10.1186/s44158-023-00115-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Invasive intracranial pressure (ICP) monitoring is a standard practice in severe brain injury cases, where it allows to derive cerebral perfusion pressure (CPP); ICP-tracing can also provide additional information about intracranial dynamics, forecast episodes of intracranial hypertension and set targets for a tailored therapy to prevent secondary brain injury. Nevertheless, controversies about the advantages of an ICP clinical management are still debated.</p><p><strong>Findings: </strong>This article reviews recent research on ICP to improve the understanding of the topic and uncover the hidden information in this signal that may be useful in clinical practice. Parameters derived from time-domain as well as frequency domain analysis include compensatory reserve, autoregulation estimation, pulse waveform analysis, and behavior of ICP in time. The possibility to predict the outcome and apply a tailored therapy using a personalised perfusion pressure target is also described.</p><p><strong>Conclusions: </strong>ICP is a crucial signal to monitor in severely brain injured patients; a bedside computer can empower standard monitoring giving new metrics that may aid in clinical management, establish a personalized therapy, and help to predict the outcome. Continuous collaboration between engineers and clinicians and application of new technologies to healthcare, is vital to improve the accuracy of current metrics and progress towards better care with individualized dynamic targets.</p>","PeriodicalId":73597,"journal":{"name":"Journal of Anesthesia, Analgesia and Critical Care (Online)","volume":"3 1","pages":"31"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481563/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anesthesia, Analgesia and Critical Care (Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44158-023-00115-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Background: Invasive intracranial pressure (ICP) monitoring is a standard practice in severe brain injury cases, where it allows to derive cerebral perfusion pressure (CPP); ICP-tracing can also provide additional information about intracranial dynamics, forecast episodes of intracranial hypertension and set targets for a tailored therapy to prevent secondary brain injury. Nevertheless, controversies about the advantages of an ICP clinical management are still debated.
Findings: This article reviews recent research on ICP to improve the understanding of the topic and uncover the hidden information in this signal that may be useful in clinical practice. Parameters derived from time-domain as well as frequency domain analysis include compensatory reserve, autoregulation estimation, pulse waveform analysis, and behavior of ICP in time. The possibility to predict the outcome and apply a tailored therapy using a personalised perfusion pressure target is also described.
Conclusions: ICP is a crucial signal to monitor in severely brain injured patients; a bedside computer can empower standard monitoring giving new metrics that may aid in clinical management, establish a personalized therapy, and help to predict the outcome. Continuous collaboration between engineers and clinicians and application of new technologies to healthcare, is vital to improve the accuracy of current metrics and progress towards better care with individualized dynamic targets.