Mumps epidemic dynamics in the United States before vaccination (1923–1932)

IF 3 3区 医学 Q2 INFECTIOUS DISEASES
Laura W. Pomeroy , Senya Magsi , Shannon McGill , Caroline E. Wheeler
{"title":"Mumps epidemic dynamics in the United States before vaccination (1923–1932)","authors":"Laura W. Pomeroy ,&nbsp;Senya Magsi ,&nbsp;Shannon McGill ,&nbsp;Caroline E. Wheeler","doi":"10.1016/j.epidem.2023.100700","DOIUrl":null,"url":null,"abstract":"<div><p>Mumps is a vaccine-preventable, reemerging, and highly transmissible infectious disease. Widespread vaccination dramatically reduced cases; however, case counts have been increasing over the past 20 years. To provide a quantitative overview of historical mumps dynamics that can act as baseline information to help identify causes of mumps reemergence, we analyzed timeseries of cases reported from 1923 to 1932 in the United States. During that time, 239,230 mumps cases were reported in 70 cities. Larger cities reported annual epidemics and smaller cities reported intermittent, sporadic outbreaks. The critical community size above which transmission continuously occurred was likely between 365,583 and 781,188 individuals but could range as high as 3,376,438 individuals. Mumps cases increased as city size increased, suggesting density-dependent transmission. Using a density-dependent SEIR model, we calculated a mean effective reproductive number (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>) of 1.2. <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> varied by city and over time, with periodic high values that could characterize short periods of very high transmission known as superspreading events. Case counts most often peaked in March, with higher-than-average transmission from December through April and showed a correlation with weekly births. While certain city pairs in Midwestern states had synchronous outbreaks, most outbreaks were less synchronous and not driven by distance between cities. This work demonstrates the importance of long-term infectious disease surveillance data and will inform future studies on mumps reemergence and control.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"44 ","pages":"Article 100700"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436523000361","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 1

Abstract

Mumps is a vaccine-preventable, reemerging, and highly transmissible infectious disease. Widespread vaccination dramatically reduced cases; however, case counts have been increasing over the past 20 years. To provide a quantitative overview of historical mumps dynamics that can act as baseline information to help identify causes of mumps reemergence, we analyzed timeseries of cases reported from 1923 to 1932 in the United States. During that time, 239,230 mumps cases were reported in 70 cities. Larger cities reported annual epidemics and smaller cities reported intermittent, sporadic outbreaks. The critical community size above which transmission continuously occurred was likely between 365,583 and 781,188 individuals but could range as high as 3,376,438 individuals. Mumps cases increased as city size increased, suggesting density-dependent transmission. Using a density-dependent SEIR model, we calculated a mean effective reproductive number (Re) of 1.2. Re varied by city and over time, with periodic high values that could characterize short periods of very high transmission known as superspreading events. Case counts most often peaked in March, with higher-than-average transmission from December through April and showed a correlation with weekly births. While certain city pairs in Midwestern states had synchronous outbreaks, most outbreaks were less synchronous and not driven by distance between cities. This work demonstrates the importance of long-term infectious disease surveillance data and will inform future studies on mumps reemergence and control.

接种疫苗前美国腮腺炎流行动态(1923-1932)。
腮腺炎是一种可通过疫苗预防、复发和高度传播的传染病。广泛接种疫苗大大减少了病例;然而,在过去20年中,病例数一直在增加。为了提供腮腺炎历史动态的定量概述,作为帮助确定腮腺炎复发原因的基线信息,我们分析了1923年至1932年美国报告的病例时间序列。在此期间,70个城市报告了239230例流行性腮腺炎病例。大城市报告了年度流行病,小城市报告了间歇性、零星的疫情。持续发生传播的临界社区规模可能在365583至781188人之间,但可能高达3376438人。腮腺炎病例随着城市规模的增加而增加,这表明传播依赖于密度。使用密度相关的SEIR模型,我们计算出平均有效繁殖数(Re)为1.2。随城市和时间的推移而变化,具有周期性的高值,可以表征被称为超级传播事件的短期非常高的传播。病例数通常在3月份达到峰值,从12月到4月的传播率高于平均水平,并与每周出生率呈相关性。虽然中西部各州的某些城市对发生了同步疫情,但大多数疫情的同步性较差,也不受城市之间距离的影响。这项工作证明了长期传染病监测数据的重要性,并将为未来腮腺炎复发和控制的研究提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信