Curtis Leclerc, Morteza Talebian Nia, Gordon G Giesbrecht
{"title":"Heat Transfer Capabilities of Surface Cooling Systems for Inducing Therapeutic Hypothermia.","authors":"Curtis Leclerc, Morteza Talebian Nia, Gordon G Giesbrecht","doi":"10.1089/ther.2023.0003","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic hypothermia (TH) is used to treat patients with cerebral ischemia. Body surface cooling provides a simple noninvasive method to induce TH. We compared three surface cooling systems (Arctic Sun with adhesive ArcticGel pads [AS]); Blanketrol III with two nonadhesive Maxi-Therm Lite blankets [BL]); and Blanketrol III with nonadhesive Kool Kit [KK]). We hypothesized that KK would remove more heat due to its tighter fit and increased surface area. Eight subjects (four females) were cooled with each system set to 4°C outflow temperature for 120 minutes. Heat loss, skin and esophageal temperature, and metabolic heat production were measured. Skin temperature was higher with KK (<i>p</i> = 0.002), heat loss was lower with KK in the first hour (<i>p</i> = 0.014) but not after 120 minutes. Heat production increased similarly with all systems. Core temperature decrease was greater for AS (0.57°C) than BL (0.14°C; <i>p</i> = 0.035), but not KK (0.24°C; <i>p</i> = 0.1). Each system had its own benefits and limitations. Heat transfer capability is dependent on the cooling pump unit and the design of the liquid-perfused covers. Both Arctic Sun and Blanketrol III cooling/pump units had 4°C output temperatures. However, the Blanketrol III unit had a greater flow rate and therefore more cooling power. The nonadhesive BL and KK covers were easier to apply and remove compared with the adhesive AS pads. AS had an early transient advantage in heat removal, but this effect decreased over the course of cooling, thus minimizing or eliminating any advantage during longer periods of cooling that occur during clinical TH. Clinical Trial Registration number: NCT04332224.</p>","PeriodicalId":22972,"journal":{"name":"Therapeutic hypothermia and temperature management","volume":"13 3","pages":"149-158"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic hypothermia and temperature management","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ther.2023.0003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic hypothermia (TH) is used to treat patients with cerebral ischemia. Body surface cooling provides a simple noninvasive method to induce TH. We compared three surface cooling systems (Arctic Sun with adhesive ArcticGel pads [AS]); Blanketrol III with two nonadhesive Maxi-Therm Lite blankets [BL]); and Blanketrol III with nonadhesive Kool Kit [KK]). We hypothesized that KK would remove more heat due to its tighter fit and increased surface area. Eight subjects (four females) were cooled with each system set to 4°C outflow temperature for 120 minutes. Heat loss, skin and esophageal temperature, and metabolic heat production were measured. Skin temperature was higher with KK (p = 0.002), heat loss was lower with KK in the first hour (p = 0.014) but not after 120 minutes. Heat production increased similarly with all systems. Core temperature decrease was greater for AS (0.57°C) than BL (0.14°C; p = 0.035), but not KK (0.24°C; p = 0.1). Each system had its own benefits and limitations. Heat transfer capability is dependent on the cooling pump unit and the design of the liquid-perfused covers. Both Arctic Sun and Blanketrol III cooling/pump units had 4°C output temperatures. However, the Blanketrol III unit had a greater flow rate and therefore more cooling power. The nonadhesive BL and KK covers were easier to apply and remove compared with the adhesive AS pads. AS had an early transient advantage in heat removal, but this effect decreased over the course of cooling, thus minimizing or eliminating any advantage during longer periods of cooling that occur during clinical TH. Clinical Trial Registration number: NCT04332224.
期刊介绍:
Therapeutic Hypothermia and Temperature Management is the first and only journal to cover all aspects of hypothermia and temperature considerations relevant to this exciting field, including its application in cardiac arrest, spinal cord and traumatic brain injury, stroke, burns, and much more. The Journal provides a strong multidisciplinary forum to ensure that research advances are well disseminated, and that therapeutic hypothermia is well understood and used effectively to enhance patient outcomes. Novel findings from translational preclinical investigations as well as clinical studies and trials are featured in original articles, state-of-the-art review articles, protocols and best practices.
Therapeutic Hypothermia and Temperature Management coverage includes:
Temperature mechanisms and cooling strategies
Protocols, risk factors, and drug interventions
Intraoperative considerations
Post-resuscitation cooling
ICU management.