Phosphorylation of the Myogenic Factor Myocyte Enhancer Factor-2 Impacts Myogenesis In Vivo.

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular and Cellular Biology Pub Date : 2023-01-01 Epub Date: 2023-05-15 DOI:10.1080/10985549.2023.2198167
Kumar Vishal, Elizabeth Barajas Alonso, Ashley A DeAguero, Jennifer A Waters, Maria B Chechenova, Richard M Cripps
{"title":"Phosphorylation of the Myogenic Factor Myocyte Enhancer Factor-2 Impacts Myogenesis In Vivo.","authors":"Kumar Vishal, Elizabeth Barajas Alonso, Ashley A DeAguero, Jennifer A Waters, Maria B Chechenova, Richard M Cripps","doi":"10.1080/10985549.2023.2198167","DOIUrl":null,"url":null,"abstract":"<p><p>Activity of the myogenic regulatory protein myocyte enhancer factor-2 (MEF2) is modulated by post-translational modification. We investigated the in vivo phosphorylation of <i>Drosophila</i> MEF2, and identified serine 98 (S98) as a phosphorylated residue. Phospho-mimetic (S98E) and phospho-null (S98A) isoforms of MEF2 did not differ from wild-type in their activity in vitro, so we used CRISPR/Cas9 to generate an S98A allele of the endogenous gene. In mutant larvae we observed phenotypes characteristic of reduced MEF2 function, including reduced body wall muscle size and reduced expression of myofibrillar protein genes; conversely,<i>S98A</i> homozygotes showed enhanced MEF2 function through muscle differentiation within the adult myoblasts associated with the wing imaginal disc. In adults, <i>S98A</i> homozygotes were viable with normal mobility, yet showed patterning defects in muscles that were enhanced when the <i>S98A</i> allele was combined with a <i>Mef2</i> null allele. Overall our data indicate that blocking MEF2 S98 phosphorylation in myoblasts enhances its myogenic capability, whereas blocking S98 phosphorylation in differentiating muscles attenuates MEF2 function. Our studies are among the first to assess the functional significance of MEF2 phosphorylation sites in the intact animal, and suggest that the same modification can have profoundly different effects upon MEF2 function depending upon the developmental context.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":"43 6","pages":"241-253"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/ed/TMCB_43_2198167.PMC10251773.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2198167","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Activity of the myogenic regulatory protein myocyte enhancer factor-2 (MEF2) is modulated by post-translational modification. We investigated the in vivo phosphorylation of Drosophila MEF2, and identified serine 98 (S98) as a phosphorylated residue. Phospho-mimetic (S98E) and phospho-null (S98A) isoforms of MEF2 did not differ from wild-type in their activity in vitro, so we used CRISPR/Cas9 to generate an S98A allele of the endogenous gene. In mutant larvae we observed phenotypes characteristic of reduced MEF2 function, including reduced body wall muscle size and reduced expression of myofibrillar protein genes; conversely,S98A homozygotes showed enhanced MEF2 function through muscle differentiation within the adult myoblasts associated with the wing imaginal disc. In adults, S98A homozygotes were viable with normal mobility, yet showed patterning defects in muscles that were enhanced when the S98A allele was combined with a Mef2 null allele. Overall our data indicate that blocking MEF2 S98 phosphorylation in myoblasts enhances its myogenic capability, whereas blocking S98 phosphorylation in differentiating muscles attenuates MEF2 function. Our studies are among the first to assess the functional significance of MEF2 phosphorylation sites in the intact animal, and suggest that the same modification can have profoundly different effects upon MEF2 function depending upon the developmental context.

Abstract Image

Abstract Image

Abstract Image

肌生成因子-肌细胞增强因子-2的磷酸化影响体内肌生成。
肌源性调节蛋白肌细胞增强因子-2(MEF2)的活性通过翻译后修饰来调节。我们研究了果蝇MEF2的体内磷酸化,并鉴定了丝氨酸98(S98)为磷酸化残基。MEF2的磷酸模拟物(S98E)和磷酸缺失物(S98A)亚型在体外的活性与野生型没有差异,因此我们使用CRISPR/Cas9产生内源性基因的S98A等位基因。在突变幼虫中,我们观察到MEF2功能降低的表型特征,包括体壁肌肉大小减少和肌原纤维蛋白基因表达减少;相反,S98A纯合子通过与翅膀想象盘相关的成肌细胞内的肌肉分化显示出增强的MEF2功能。在成年人中,S98A纯合子具有正常的活动能力,但在肌肉中显示出模式缺陷,当S98A等位基因与Mef2无效等位基因结合时,这种缺陷会增强。总的来说,我们的数据表明,在成肌细胞中阻断MEF2 S98磷酸化可增强其成肌能力,而在分化肌肉中阻断S98磷酸酸化可减弱MEF2功能。我们的研究是第一批评估完整动物中MEF2磷酸化位点功能意义的研究之一,并表明相同的修饰可能对MEF2功能产生截然不同的影响,这取决于发育环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信