Yuan Zhang, David M Vock, Megan E Patrick, Lizbeth H Finestack, Thomas A Murray
{"title":"Outcome trajectory estimation for optimal dynamic treatment regimes with repeated measures.","authors":"Yuan Zhang, David M Vock, Megan E Patrick, Lizbeth H Finestack, Thomas A Murray","doi":"10.1093/jrsssc/qlad037","DOIUrl":null,"url":null,"abstract":"<p><p>In recent sequential multiple assignment randomized trials, outcomes were assessed multiple times to evaluate longer-term impacts of the dynamic treatment regimes (DTRs). Q-learning requires a scalar response to identify the optimal DTR. Inverse probability weighting may be used to estimate the optimal outcome trajectory, but it is inefficient, susceptible to model mis-specification, and unable to characterize how treatment effects manifest over time. We propose modified Q-learning with generalized estimating equations to address these limitations and apply it to the M-bridge trial, which evaluates adaptive interventions to prevent problematic drinking among college freshmen. Simulation studies demonstrate our proposed method improves efficiency and robustness.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent sequential multiple assignment randomized trials, outcomes were assessed multiple times to evaluate longer-term impacts of the dynamic treatment regimes (DTRs). Q-learning requires a scalar response to identify the optimal DTR. Inverse probability weighting may be used to estimate the optimal outcome trajectory, but it is inefficient, susceptible to model mis-specification, and unable to characterize how treatment effects manifest over time. We propose modified Q-learning with generalized estimating equations to address these limitations and apply it to the M-bridge trial, which evaluates adaptive interventions to prevent problematic drinking among college freshmen. Simulation studies demonstrate our proposed method improves efficiency and robustness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.