{"title":"<i>Akkermansia muciniphila</i> and <i>Bifidobacterium bifidum</i> Prevent NAFLD by Regulating FXR Expression and Gut Microbiota.","authors":"Fulin Nian, Longyun Wu, Qiaoyun Xia, Peiying Tian, Chunmei Ding, Xiaolan Lu","doi":"10.14218/JCTH.2022.00415","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Non-alcoholic fatty liver disease (NAFLD) is closely associated with gut microbiota and has become the most common chronic liver disease worldwide, but the relationship between specific strains and NAFLD has not been fully elucidated. We aimed to investigate whether <i>Akkermansia muciniphila</i> and <i>Bifidobacterium bifidum</i> could prevent NAFLD, the effects of their action alone or in combination, possible mechanisms, and modulation of the gut microbiota.</p><p><strong>Methods: </strong>Mice were fed with high-fat diets (HFD) for 20 weeks, in which experimental groups were pretreated with quadruple antibiotics and then given the corresponding bacterial solution or PBS. The expression of the glycolipid metabolism indicators, liver, and intestinal farnesol X receptors (FXR), and intestinal mucosal tight junction proteins were detected. We also analyzed the alterations of inflammatory and immune status and the gut microbiota of mice.</p><p><strong>Results: </strong>Both strains were able to attenuate mass gain (<i>p</i><0.001), insulin resistance (<i>p</i><0.001), and liver lipid deposition (<i>p</i><0.001). They also reduced the levels of the pro-inflammatory factors (<i>p</i><0.05) and the proportion of Th17 (<i>p</i><0.001), while elevating the proportion of Treg (<i>p</i><0.01). Both strains activated hepatic FXR while suppressing intestinal FXR (<i>p</i><0.05), and elevating tight junction protein expression (<i>p</i><0.05). We also perceived changes in the gut microbiota and found both strains were able to synergize beneficial microbiota to function.</p><p><strong>Conclusions: </strong>Administration of <i>A. muciniphila</i> or <i>B. bifidum</i> alone or in combination was protective against HFD-induced NAFLD formation and could be used as alternative treatment strategy for NAFLD after further exploration.</p>","PeriodicalId":15484,"journal":{"name":"Journal of Clinical and Translational Hepatology","volume":"11 4","pages":"763-776"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0f/06/JCTH-11-763.PMC10318293.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14218/JCTH.2022.00415","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Background and aims: Non-alcoholic fatty liver disease (NAFLD) is closely associated with gut microbiota and has become the most common chronic liver disease worldwide, but the relationship between specific strains and NAFLD has not been fully elucidated. We aimed to investigate whether Akkermansia muciniphila and Bifidobacterium bifidum could prevent NAFLD, the effects of their action alone or in combination, possible mechanisms, and modulation of the gut microbiota.
Methods: Mice were fed with high-fat diets (HFD) for 20 weeks, in which experimental groups were pretreated with quadruple antibiotics and then given the corresponding bacterial solution or PBS. The expression of the glycolipid metabolism indicators, liver, and intestinal farnesol X receptors (FXR), and intestinal mucosal tight junction proteins were detected. We also analyzed the alterations of inflammatory and immune status and the gut microbiota of mice.
Results: Both strains were able to attenuate mass gain (p<0.001), insulin resistance (p<0.001), and liver lipid deposition (p<0.001). They also reduced the levels of the pro-inflammatory factors (p<0.05) and the proportion of Th17 (p<0.001), while elevating the proportion of Treg (p<0.01). Both strains activated hepatic FXR while suppressing intestinal FXR (p<0.05), and elevating tight junction protein expression (p<0.05). We also perceived changes in the gut microbiota and found both strains were able to synergize beneficial microbiota to function.
Conclusions: Administration of A. muciniphila or B. bifidum alone or in combination was protective against HFD-induced NAFLD formation and could be used as alternative treatment strategy for NAFLD after further exploration.