Extending Classification Algorithms to Case-Control Studies.

IF 2.3 Q3 ENGINEERING, BIOMEDICAL
Biomedical Engineering and Computational Biology Pub Date : 2019-07-15 eCollection Date: 2019-01-01 DOI:10.1177/1179597219858954
Bryan Stanfill, Sarah Reehl, Lisa Bramer, Ernesto S Nakayasu, Stephen S Rich, Thomas O Metz, Marian Rewers, Bobbie-Jo Webb-Robertson
{"title":"Extending Classification Algorithms to Case-Control Studies.","authors":"Bryan Stanfill, Sarah Reehl, Lisa Bramer, Ernesto S Nakayasu, Stephen S Rich, Thomas O Metz, Marian Rewers, Bobbie-Jo Webb-Robertson","doi":"10.1177/1179597219858954","DOIUrl":null,"url":null,"abstract":"<p><p>Classification is a common technique applied to 'omics data to build predictive models and identify potential markers of biomedical outcomes. Despite the prevalence of case-control studies, the number of classification methods available to analyze data generated by such studies is extremely limited. Conditional logistic regression is the most commonly used technique, but the associated modeling assumptions limit its ability to identify a large class of sufficiently complicated 'omic signatures. We propose a data preprocessing step which generalizes and makes any linear or nonlinear classification algorithm, even those typically not appropriate for matched design data, available to be used to model case-control data and identify relevant biomarkers in these study designs. We demonstrate on simulated case-control data that both the classification and variable selection accuracy of each method is improved after applying this processing step and that the proposed methods are comparable to or outperform existing variable selection methods. Finally, we demonstrate the impact of conditional classification algorithms on a large cohort study of children with islet autoimmunity.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"10 ","pages":"1179597219858954"},"PeriodicalIF":2.3000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d6/6d/10.1177_1179597219858954.PMC6630079.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1179597219858954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Classification is a common technique applied to 'omics data to build predictive models and identify potential markers of biomedical outcomes. Despite the prevalence of case-control studies, the number of classification methods available to analyze data generated by such studies is extremely limited. Conditional logistic regression is the most commonly used technique, but the associated modeling assumptions limit its ability to identify a large class of sufficiently complicated 'omic signatures. We propose a data preprocessing step which generalizes and makes any linear or nonlinear classification algorithm, even those typically not appropriate for matched design data, available to be used to model case-control data and identify relevant biomarkers in these study designs. We demonstrate on simulated case-control data that both the classification and variable selection accuracy of each method is improved after applying this processing step and that the proposed methods are comparable to or outperform existing variable selection methods. Finally, we demonstrate the impact of conditional classification algorithms on a large cohort study of children with islet autoimmunity.

Abstract Image

Abstract Image

Abstract Image

将分类算法扩展到案例对照研究。
分类是一种常用的技术,用于组学数据,以建立预测模型并识别生物医学结果的潜在标志物。尽管病例对照研究很普遍,但可用于分析此类研究产生的数据的分类方法数量极为有限。条件逻辑回归是最常用的技术,但相关的建模假设限制了其识别一大类足够复杂的经济特征的能力。我们提出了一个数据预处理步骤,该步骤概括并使任何线性或非线性分类算法,即使是那些通常不适合匹配设计数据的算法,都可用于对病例对照数据进行建模,并在这些研究设计中识别相关的生物标志物。我们在模拟病例对照数据中证明,在应用这一处理步骤后,每种方法的分类和变量选择准确性都得到了提高,并且所提出的方法与现有的变量选择方法相当或优于现有的方法。最后,我们展示了条件分类算法对患有胰岛自身免疫的儿童的大型队列研究的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信