Suppression of cortical electrostimulation artifacts using pre-whitening and null projection.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jeffrey Lim, Po T Wang, Luke Bashford, Spencer Kellis, Susan J Shaw, Hui Gong, Michelle Armacost, Payam Heydari, An H Do, Richard A Andersen, Charles Y Liu, Zoran Nenadic
{"title":"Suppression of cortical electrostimulation artifacts using pre-whitening and null projection.","authors":"Jeffrey Lim,&nbsp;Po T Wang,&nbsp;Luke Bashford,&nbsp;Spencer Kellis,&nbsp;Susan J Shaw,&nbsp;Hui Gong,&nbsp;Michelle Armacost,&nbsp;Payam Heydari,&nbsp;An H Do,&nbsp;Richard A Andersen,&nbsp;Charles Y Liu,&nbsp;Zoran Nenadic","doi":"10.1088/1741-2552/acf68b","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Invasive brain-computer interfaces (BCIs) have shown promise in restoring motor function to those paralyzed by neurological injuries. These systems also have the ability to restore sensation via cortical electrostimulation. Cortical stimulation produces strong artifacts that can obscure neural signals or saturate recording amplifiers. While front-end hardware techniques can alleviate this problem, residual artifacts generally persist and must be suppressed by back-end methods.<i>Approach.</i>We have developed a technique based on pre-whitening and null projection (PWNP) and tested its ability to suppress stimulation artifacts in electroencephalogram (EEG), electrocorticogram (ECoG) and microelectrode array (MEA) signals from five human subjects.<i>Main results.</i>In EEG signals contaminated by narrow-band stimulation artifacts, the PWNP method achieved average artifact suppression between 32 and 34 dB, as measured by an increase in signal-to-interference ratio. In ECoG and MEA signals contaminated by broadband stimulation artifacts, our method suppressed artifacts by 78%-80% and 85%, respectively, as measured by a reduction in interference index. When compared to independent component analysis, which is considered the state-of-the-art technique for artifact suppression, our method achieved superior results, while being significantly easier to implement.<i>Significance.</i>PWNP can potentially act as an efficient method of artifact suppression to enable simultaneous stimulation and recording in bi-directional BCIs to biomimetically restore motor function.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acf68b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Invasive brain-computer interfaces (BCIs) have shown promise in restoring motor function to those paralyzed by neurological injuries. These systems also have the ability to restore sensation via cortical electrostimulation. Cortical stimulation produces strong artifacts that can obscure neural signals or saturate recording amplifiers. While front-end hardware techniques can alleviate this problem, residual artifacts generally persist and must be suppressed by back-end methods.Approach.We have developed a technique based on pre-whitening and null projection (PWNP) and tested its ability to suppress stimulation artifacts in electroencephalogram (EEG), electrocorticogram (ECoG) and microelectrode array (MEA) signals from five human subjects.Main results.In EEG signals contaminated by narrow-band stimulation artifacts, the PWNP method achieved average artifact suppression between 32 and 34 dB, as measured by an increase in signal-to-interference ratio. In ECoG and MEA signals contaminated by broadband stimulation artifacts, our method suppressed artifacts by 78%-80% and 85%, respectively, as measured by a reduction in interference index. When compared to independent component analysis, which is considered the state-of-the-art technique for artifact suppression, our method achieved superior results, while being significantly easier to implement.Significance.PWNP can potentially act as an efficient method of artifact suppression to enable simultaneous stimulation and recording in bi-directional BCIs to biomimetically restore motor function.

使用预白化和零投影抑制皮层电刺激伪影。
目的:有创脑机接口(BCI)在恢复因神经损伤而瘫痪的患者的运动功能方面显示出了前景。这些系统还具有通过皮层电刺激恢复感觉的能力。皮层刺激会产生强烈的伪影,这些伪影可能会模糊神经信号或使记录放大器饱和。虽然前端硬件技术可以缓解这个问题,但残留的伪影通常会持续存在,必须通过后端方法来抑制。方法:我们开发了一种基于预白化和零投影(PWNP)的技术,并测试了其抑制五名受试者脑电图(EEG)、皮层电图(ECoG)和微电极阵列(MEA)信号中刺激伪影的能力。主要结果。在被窄带刺激伪影污染的EEG信号中,PWNP方法实现了32到34之间的平均伪影抑制 dB,如通过信号干扰比的增加来测量的。在被宽带刺激伪影污染的ECoG和MEA信号中,我们的方法通过干扰指数的降低分别抑制了78%-80%和85%的伪影。与被认为是最先进的伪影抑制技术的独立分量分析相比,我们的方法取得了优异的结果,同时也更容易实现。值得注意的是,PWNP可能是一种有效的伪影抑制方法,可以在双向脑机接口中同时刺激和记录,以仿生恢复运动功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neural engineering
Journal of neural engineering 工程技术-工程:生物医学
CiteScore
7.80
自引率
12.50%
发文量
319
审稿时长
4.2 months
期刊介绍: The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels. The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信