The Effect of Do-It-Yourself Real-Time Continuous Glucose Monitoring on Glycemic Variables and Participant-Reported Outcomes in Adults With Type 1 Diabetes: A Randomized Crossover Trial.
Shekhar Sehgal, Mona Elbalshy, Jonathan Williman, Barbara Galland, Hamish Crocket, Rosemary Hall, Ryan Paul, Robert Leikis, Martin de Bock, Benjamin J Wheeler
{"title":"The Effect of Do-It-Yourself Real-Time Continuous Glucose Monitoring on Glycemic Variables and Participant-Reported Outcomes in Adults With Type 1 Diabetes: A Randomized Crossover Trial.","authors":"Shekhar Sehgal, Mona Elbalshy, Jonathan Williman, Barbara Galland, Hamish Crocket, Rosemary Hall, Ryan Paul, Robert Leikis, Martin de Bock, Benjamin J Wheeler","doi":"10.1177/19322968231196562","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Real-time continuous glucose monitoring (rtCGM) has several advantages over intermittently scanned continuous glucose monitoring (isCGM) but generally comes at a higher cost. Do-it-yourself rtCGM (DIY-rtCGM) potentially has benefits similar to those of rtCGM. This study compared outcomes in adults with type 1 diabetes using DIY-rtCGM versus isCGM.</p><p><strong>Methods: </strong>In this crossover trial, adults with type 1 diabetes were randomized to use isCGM or DIY-rtCGM for eight weeks before crossover to use the other device for eight weeks, after a four-week washout period where participants reverted back to isCGM. The primary endpoint was time in range (TIR; 3.9-10 mmol/L). Secondary endpoints included other glycemic control measures, psychosocial outcomes, and sleep quality.</p><p><strong>Results: </strong>Sixty participants were recruited, and 52 (87%) completed follow-up. Glucose outcomes were similar in the DIY-rtCGM and isCGM groups, including TIR (53.1% vs 51.3%; mean difference -1.7% <i>P</i> = .593), glycosylated hemoglobin (57.0 ± 17.8 vs 61.4 ± 12.2 mmol/L; <i>P</i> = .593), and time in hypoglycemia <3.9 mmol/L (3.9 ± 3.8% vs 3.8 ± 4.0%; <i>P</i> = .947). Hypoglycemia Fear Survey total score (1.17 ± 0.52 vs 0.97 ± 0.54; <i>P</i> = .02) and fear of hypoglycemia score (1.18 ± 0.64 vs 0.97 ± 0.45; <i>P</i> = .02) were significantly higher during DIY-rtCGM versus isCGM. Diabetes Treatment Satisfaction Questionnaire status (DTSQS) score was also higher with DIY-rtCGM versus isCGM (28.7 ± 5.8 vs 26.0 ± 5.8; <i>P</i> = .04), whereas diabetes-related quality of life was slightly lower (DAWN2 Impact of Diabetes score: 3.11 ± 0.4 vs 3.32 ± 0.51; <i>P</i> = .045); sleep quality did not differ between the two groups.</p><p><strong>Conclusion: </strong>Although the use of DIY-rtCGM did not improve glycemic outcomes compared with isCGM, it positively impacted several patient-reported psychosocial variables. DIY-rtCGM potentially provides an alternative, cost-effective rtCGM option.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"415-425"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968231196562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Real-time continuous glucose monitoring (rtCGM) has several advantages over intermittently scanned continuous glucose monitoring (isCGM) but generally comes at a higher cost. Do-it-yourself rtCGM (DIY-rtCGM) potentially has benefits similar to those of rtCGM. This study compared outcomes in adults with type 1 diabetes using DIY-rtCGM versus isCGM.
Methods: In this crossover trial, adults with type 1 diabetes were randomized to use isCGM or DIY-rtCGM for eight weeks before crossover to use the other device for eight weeks, after a four-week washout period where participants reverted back to isCGM. The primary endpoint was time in range (TIR; 3.9-10 mmol/L). Secondary endpoints included other glycemic control measures, psychosocial outcomes, and sleep quality.
Results: Sixty participants were recruited, and 52 (87%) completed follow-up. Glucose outcomes were similar in the DIY-rtCGM and isCGM groups, including TIR (53.1% vs 51.3%; mean difference -1.7% P = .593), glycosylated hemoglobin (57.0 ± 17.8 vs 61.4 ± 12.2 mmol/L; P = .593), and time in hypoglycemia <3.9 mmol/L (3.9 ± 3.8% vs 3.8 ± 4.0%; P = .947). Hypoglycemia Fear Survey total score (1.17 ± 0.52 vs 0.97 ± 0.54; P = .02) and fear of hypoglycemia score (1.18 ± 0.64 vs 0.97 ± 0.45; P = .02) were significantly higher during DIY-rtCGM versus isCGM. Diabetes Treatment Satisfaction Questionnaire status (DTSQS) score was also higher with DIY-rtCGM versus isCGM (28.7 ± 5.8 vs 26.0 ± 5.8; P = .04), whereas diabetes-related quality of life was slightly lower (DAWN2 Impact of Diabetes score: 3.11 ± 0.4 vs 3.32 ± 0.51; P = .045); sleep quality did not differ between the two groups.
Conclusion: Although the use of DIY-rtCGM did not improve glycemic outcomes compared with isCGM, it positively impacted several patient-reported psychosocial variables. DIY-rtCGM potentially provides an alternative, cost-effective rtCGM option.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.