Iain Carmichael, Benjamin C Calhoun, Katherine A Hoadley, Melissa A Troester, Joseph Geradts, Heather D Couture, Linnea Olsson, Charles M Perou, Marc Niethammer, Jan Hannig, J S Marron
{"title":"JOINT AND INDIVIDUAL ANALYSIS OF BREAST CANCER HISTOLOGIC IMAGES AND GENOMIC COVARIATES.","authors":"Iain Carmichael, Benjamin C Calhoun, Katherine A Hoadley, Melissa A Troester, Joseph Geradts, Heather D Couture, Linnea Olsson, Charles M Perou, Marc Niethammer, Jan Hannig, J S Marron","doi":"10.1214/20-aoas1433","DOIUrl":null,"url":null,"abstract":"<p><p>The two main approaches in the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genomics. While both histopathology and genomics are fundamental to cancer research, the connections between these fields have been relatively superficial. We bridge this gap by investigating the Carolina Breast Cancer Study through the development of an integrative, exploratory analysis framework. Our analysis gives insights - some known, some novel - that are engaging to both pathologists and geneticists. Our analysis framework is based on Angle-based Joint and Individual Variation Explained (AJIVE) for statistical data integration and exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction. CNNs raise interpretability issues that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"15 4","pages":"1697-1722"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007558/pdf/nihms-1780328.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aoas1433","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The two main approaches in the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genomics. While both histopathology and genomics are fundamental to cancer research, the connections between these fields have been relatively superficial. We bridge this gap by investigating the Carolina Breast Cancer Study through the development of an integrative, exploratory analysis framework. Our analysis gives insights - some known, some novel - that are engaging to both pathologists and geneticists. Our analysis framework is based on Angle-based Joint and Individual Variation Explained (AJIVE) for statistical data integration and exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction. CNNs raise interpretability issues that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.