Isaline Guex, Christian Mazza, Manupriyam Dubey, Maxime Batsch, Renyi Li, Jan Roelof van der Meer
{"title":"Regulated bacterial interaction networks: A mathematical framework to describe competitive growth under inclusion of metabolite cross-feeding.","authors":"Isaline Guex, Christian Mazza, Manupriyam Dubey, Maxime Batsch, Renyi Li, Jan Roelof van der Meer","doi":"10.1371/journal.pcbi.1011402","DOIUrl":null,"url":null,"abstract":"<p><p>When bacterial species with the same resource preferences share the same growth environment, it is commonly believed that direct competition will arise. A large variety of competition and more general 'interaction' models have been formulated, but what is currently lacking are models that link monoculture growth kinetics and community growth under inclusion of emerging biological interactions, such as metabolite cross-feeding. In order to understand and mathematically describe the nature of potential cross-feeding interactions, we design experiments where two bacterial species Pseudomonas putida and Pseudomonas veronii grow in liquid medium either in mono- or as co-culture in a resource-limited environment. We measure population growth under single substrate competition or with double species-specific substrates (substrate 'indifference'), and starting from varying cell ratios of either species. Using experimental data as input, we first consider a mean-field model of resource-based competition, which captures well the empirically observed growth rates for monocultures, but fails to correctly predict growth rates in co-culture mixtures, in particular for skewed starting species ratios. Based on this, we extend the model by cross-feeding interactions where the consumption of substrate by one consumer produces metabolites that in turn are resources for the other consumer, thus leading to positive feedback in the species system. Two different cross-feeding options were considered, which either lead to constant metabolite cross-feeding, or to a regulated form, where metabolite utilization is activated with rates according to either a threshold or a Hill function, dependent on metabolite concentration. Both mathematical proof and experimental data indicate regulated cross-feeding to be the preferred model to constant metabolite utilization, with best co-culture growth predictions in case of high Hill coefficients, close to binary (on/off) activation states. This suggests that species use the appearing metabolite concentrations only when they are becoming high enough; possibly as a consequence of their lower energetic content than the primary substrate. Metabolite sharing was particularly relevant at unbalanced starting cell ratios, causing the minority partner to proliferate more than expected from the competitive substrate because of metabolite release from the majority partner. This effect thus likely quells immediate substrate competition and may be important in natural communities with typical very skewed relative taxa abundances and slower-growing taxa. In conclusion, the regulated bacterial interaction network correctly describes species substrate growth reactions in mixtures with few kinetic parameters that can be obtained from monoculture growth experiments.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011402","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When bacterial species with the same resource preferences share the same growth environment, it is commonly believed that direct competition will arise. A large variety of competition and more general 'interaction' models have been formulated, but what is currently lacking are models that link monoculture growth kinetics and community growth under inclusion of emerging biological interactions, such as metabolite cross-feeding. In order to understand and mathematically describe the nature of potential cross-feeding interactions, we design experiments where two bacterial species Pseudomonas putida and Pseudomonas veronii grow in liquid medium either in mono- or as co-culture in a resource-limited environment. We measure population growth under single substrate competition or with double species-specific substrates (substrate 'indifference'), and starting from varying cell ratios of either species. Using experimental data as input, we first consider a mean-field model of resource-based competition, which captures well the empirically observed growth rates for monocultures, but fails to correctly predict growth rates in co-culture mixtures, in particular for skewed starting species ratios. Based on this, we extend the model by cross-feeding interactions where the consumption of substrate by one consumer produces metabolites that in turn are resources for the other consumer, thus leading to positive feedback in the species system. Two different cross-feeding options were considered, which either lead to constant metabolite cross-feeding, or to a regulated form, where metabolite utilization is activated with rates according to either a threshold or a Hill function, dependent on metabolite concentration. Both mathematical proof and experimental data indicate regulated cross-feeding to be the preferred model to constant metabolite utilization, with best co-culture growth predictions in case of high Hill coefficients, close to binary (on/off) activation states. This suggests that species use the appearing metabolite concentrations only when they are becoming high enough; possibly as a consequence of their lower energetic content than the primary substrate. Metabolite sharing was particularly relevant at unbalanced starting cell ratios, causing the minority partner to proliferate more than expected from the competitive substrate because of metabolite release from the majority partner. This effect thus likely quells immediate substrate competition and may be important in natural communities with typical very skewed relative taxa abundances and slower-growing taxa. In conclusion, the regulated bacterial interaction network correctly describes species substrate growth reactions in mixtures with few kinetic parameters that can be obtained from monoculture growth experiments.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.