Néstor J Oviedo, Cindy L Nicolas, Dany S Adams, Michael Levin
{"title":"Live Imaging of Planarian Membrane Potential Using DiBAC4(3).","authors":"Néstor J Oviedo, Cindy L Nicolas, Dany S Adams, Michael Levin","doi":"10.1101/pdb.prot5055","DOIUrl":null,"url":null,"abstract":"<p><p>INTRODUCTIONThis protocol describes how to use the anionic membrane voltage-reporting dye DiBAC(4)(3) to generate images of cell membrane potential in live planarians. These images qualitatively reveal variations in time-averaged membrane potential across different regions of the organism. Changes in these images due to experimental treatments reveal how the particular treatment affects this physiological parameter. This method is a great improvement over standard electrophysiological techniques, which cannot be used to gain an understanding of the electrical properties of an entire worm or a regenerating fragment, due to small cell size and large cell number. When the proper controls are performed, this technique is a very powerful and simple way to gather physiologic data.</p>","PeriodicalId":10835,"journal":{"name":"CSH protocols","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468776/pdf/nihms-1925437.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSH protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot5055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
INTRODUCTIONThis protocol describes how to use the anionic membrane voltage-reporting dye DiBAC(4)(3) to generate images of cell membrane potential in live planarians. These images qualitatively reveal variations in time-averaged membrane potential across different regions of the organism. Changes in these images due to experimental treatments reveal how the particular treatment affects this physiological parameter. This method is a great improvement over standard electrophysiological techniques, which cannot be used to gain an understanding of the electrical properties of an entire worm or a regenerating fragment, due to small cell size and large cell number. When the proper controls are performed, this technique is a very powerful and simple way to gather physiologic data.