Majd Al Assaad, Gunes Gundem, Benjamin Liechty, Andrea Sboner, Juan Medina, Elli Papaemmanuil, Cora N Sternberg, Asher Marks, Mark M Souweidane, Jeffrey P Greenfield, Ivy Tran, Matija Snuderl, Olivier Elemento, Marcin Imielinski, David J Pisapia, Juan Miguel Mosquera
{"title":"The importance of escalating molecular diagnostics in patients with low-grade pediatric brain cancer.","authors":"Majd Al Assaad, Gunes Gundem, Benjamin Liechty, Andrea Sboner, Juan Medina, Elli Papaemmanuil, Cora N Sternberg, Asher Marks, Mark M Souweidane, Jeffrey P Greenfield, Ivy Tran, Matija Snuderl, Olivier Elemento, Marcin Imielinski, David J Pisapia, Juan Miguel Mosquera","doi":"10.1101/mcs.a006275","DOIUrl":null,"url":null,"abstract":"<p><p>Pilocytic astrocytomas are the most common pediatric brain tumors, typically presenting as low-grade neoplasms. We report two cases of pilocytic astrocytoma with atypical tumor progression. Case 1 involves a 12-yr-old boy with an unresectable suprasellar tumor, negative for <i>BRAF</i> rearrangement but harboring a <i>BRAF</i> p.V600E mutation. He experienced tumor size reduction and stable disease following dabrafenib treatment. Case 2 describes a 6-yr-old boy with a thalamic tumor that underwent multiple resections, with no actionable driver detected using targeted next-generation sequencing. Whole-genome and RNA-seq analysis identified an internal tandem duplication in <i>FGFR1</i> and RAS pathway activation. Future management options include FGFR1 inhibitors. These cases demonstrate the importance of escalating molecular diagnostics for pediatric brain cancer, advocating for early reflexing to integrative whole-genome sequencing and transcriptomic profiling when targeted panels are uninformative. Identifying molecular drivers can significantly impact treatment decisions and improve patient outcomes.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor Molecular Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/mcs.a006275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pilocytic astrocytomas are the most common pediatric brain tumors, typically presenting as low-grade neoplasms. We report two cases of pilocytic astrocytoma with atypical tumor progression. Case 1 involves a 12-yr-old boy with an unresectable suprasellar tumor, negative for BRAF rearrangement but harboring a BRAF p.V600E mutation. He experienced tumor size reduction and stable disease following dabrafenib treatment. Case 2 describes a 6-yr-old boy with a thalamic tumor that underwent multiple resections, with no actionable driver detected using targeted next-generation sequencing. Whole-genome and RNA-seq analysis identified an internal tandem duplication in FGFR1 and RAS pathway activation. Future management options include FGFR1 inhibitors. These cases demonstrate the importance of escalating molecular diagnostics for pediatric brain cancer, advocating for early reflexing to integrative whole-genome sequencing and transcriptomic profiling when targeted panels are uninformative. Identifying molecular drivers can significantly impact treatment decisions and improve patient outcomes.
期刊介绍:
Cold Spring Harbor Molecular Case Studies is an open-access, peer-reviewed, international journal in the field of precision medicine. Articles in the journal present genomic and molecular analyses of individuals or cohorts alongside their clinical presentations and phenotypic information. The journal''s purpose is to rapidly share insights into disease development and treatment gained by application of genomics, proteomics, metabolomics, biomarker analysis, and other approaches. The journal covers the fields of cancer, complex diseases, monogenic disorders, neurological conditions, orphan diseases, infectious disease, gene therapy, and pharmacogenomics. It has a rapid peer-review process that is based on technical evaluation of the analyses performed, not the novelty of findings, and offers a swift, clear path to publication. The journal publishes: Research Reports presenting detailed case studies of individuals and small cohorts, Research Articles describing more extensive work using larger cohorts and/or functional analyses, Rapid Communications presenting the discovery of a novel variant and/or novel phenotype associated with a known disease gene, Rapid Cancer Communications presenting the discovery of a novel variant or combination of variants in a cancer type, Variant Discrepancy Resolution describing efforts to resolve differences or update variant interpretations in ClinVar through case-level data sharing, Follow-up Reports linked to previous observations, Plus Review Articles, Editorials, and Position Statements on best practices for research in precision medicine.