Determining prescriptions in electronic healthcare record data: methods for development of standardized, reproducible drug codelists.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2023-08-29 eCollection Date: 2023-10-01 DOI:10.1093/jamiaopen/ooad078
Emily L Graul, Philip W Stone, Georgie M Massen, Sara Hatam, Alexander Adamson, Spiros Denaxas, Nicholas S Peters, Jennifer K Quint
{"title":"Determining prescriptions in electronic healthcare record data: methods for development of standardized, reproducible drug codelists.","authors":"Emily L Graul, Philip W Stone, Georgie M Massen, Sara Hatam, Alexander Adamson, Spiros Denaxas, Nicholas S Peters, Jennifer K Quint","doi":"10.1093/jamiaopen/ooad078","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a standardizable, reproducible method for creating drug codelists that incorporates clinical expertise and is adaptable to other studies and databases.</p><p><strong>Materials and methods: </strong>We developed methods to generate drug codelists and tested this using the Clinical Practice Research Datalink (CPRD) Aurum database, accounting for missing data in the database. We generated codelists for: (1) cardiovascular disease and (2) inhaled Chronic Obstructive Pulmonary Disease (COPD) therapies, applying them to a sample cohort of 335 931 COPD patients. We compared searching all drug dictionary variables (A) against searching only (B) chemical or (C) ontological variables.</p><p><strong>Results: </strong>In Search A, we identified 165 150 patients prescribed cardiovascular drugs (49.2% of cohort), and 317 963 prescribed COPD inhalers (94.7% of cohort). Evaluating output per search strategy, Search C missed numerous prescriptions, including vasodilator anti-hypertensives (A and B:19 696 prescriptions; C:1145) and SAMA inhalers (A and B:35 310; C:564).</p><p><strong>Discussion: </strong>We recommend the full search (A) for comprehensiveness. There are special considerations when generating adaptable and generalizable drug codelists, including fluctuating status, cohort-specific drug indications, underlying hierarchical ontology, and statistical analyses.</p><p><strong>Conclusions: </strong>Methods must have end-to-end clinical input, and be standardizable, reproducible, and understandable to all researchers across data contexts.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"6 3","pages":"ooad078"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d2/17/ooad078.PMC10463548.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To develop a standardizable, reproducible method for creating drug codelists that incorporates clinical expertise and is adaptable to other studies and databases.

Materials and methods: We developed methods to generate drug codelists and tested this using the Clinical Practice Research Datalink (CPRD) Aurum database, accounting for missing data in the database. We generated codelists for: (1) cardiovascular disease and (2) inhaled Chronic Obstructive Pulmonary Disease (COPD) therapies, applying them to a sample cohort of 335 931 COPD patients. We compared searching all drug dictionary variables (A) against searching only (B) chemical or (C) ontological variables.

Results: In Search A, we identified 165 150 patients prescribed cardiovascular drugs (49.2% of cohort), and 317 963 prescribed COPD inhalers (94.7% of cohort). Evaluating output per search strategy, Search C missed numerous prescriptions, including vasodilator anti-hypertensives (A and B:19 696 prescriptions; C:1145) and SAMA inhalers (A and B:35 310; C:564).

Discussion: We recommend the full search (A) for comprehensiveness. There are special considerations when generating adaptable and generalizable drug codelists, including fluctuating status, cohort-specific drug indications, underlying hierarchical ontology, and statistical analyses.

Conclusions: Methods must have end-to-end clinical input, and be standardizable, reproducible, and understandable to all researchers across data contexts.

Abstract Image

Abstract Image

Abstract Image

电子医疗记录数据中处方的确定:标准化、可复制药物代码表的开发方法。
目的:开发一种可标准化、可重复的方法来创建药物代码表,该方法结合了临床专业知识,并适用于其他研究和数据库。材料和方法:我们开发了生成药物代码表的方法,并使用临床实践研究数据链接(CPRD)Aurum数据库对此进行了测试,以解释数据库中缺失的数据。我们生成了以下疾病的代码表:(1)心血管疾病和(2)吸入性慢性阻塞性肺病(COPD)治疗,并将其应用于335931名COPD患者的样本队列。我们比较了搜索所有药物字典变量(A)和仅搜索(B)化学或(C)本体变量。结果:在搜索A中,我们确定了165150名服用心血管药物的患者(占队列的49.2%)和317963名服用COPD吸入器的患者(约占队列的94.7%)。根据搜索策略评估输出,search C遗漏了许多处方,包括血管舒张剂抗高血压药(A和B:19696张处方;C:1145张)和SAMA吸入器(A和B:35310张;C:564张)。讨论:我们建议全面搜索(A)以获得全面性。在生成可适应性和可推广的药物代码表时,需要特别考虑,包括波动状态、队列特异性药物适应症、潜在的层次本体和统计分析。结论:方法必须有端到端的临床输入,并且在数据环境中对所有研究人员来说都是标准化的、可重复的和可理解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信