Yuan Gao, Huaqing Ni, Ying Chen, Yibin Tang, Xiaofeng Liu
{"title":"Subtype classification of attention deficit hyperactivity disorder with hierarchical binary hypothesis testing framework.","authors":"Yuan Gao, Huaqing Ni, Ying Chen, Yibin Tang, Xiaofeng Liu","doi":"10.1088/1741-2552/acf523","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The diagnosis of attention deficit hyperactivity disorder (ADHD) subtypes is important for the refined treatment of ADHD children. Although automated diagnosis methods based on machine learning are performed with structural and functional magnetic resonance imaging (sMRI and fMRI) data which have full observation of brains, they are not satisfactory with the accuracy of less than80%for the ADHD subtype diagnosis.<i>Approach</i>. To improve the accuracy and obtain the biomarker of ADHD subtypes, we proposed a hierarchical binary hypothesis testing (H-BHT) framework by using brain functional connectivity (FC) as input bio-signals. The framework includes a two-stage procedure with a decision tree strategy and thus becomes suitable for the subtype classification. Also, typical FC is extracted in both two stages of identifying ADHD subtypes. That means the important FC is found out for the subtype recognition.<i>Main results</i>. We apply the proposed H-BHT framework to resting state fMRI datasets from ADHD-200 consortium. The results are achieved with the average accuracy97.1%and an average kappa score 0.947. Discriminative FC between ADHD subtypes is found by comparing the P-values of typical FC.<i>Significance</i>. The proposed framework not only is an effective structure for ADHD subtype classification, but also provides useful reference for multiclass classification of mental disease subtypes.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acf523","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. The diagnosis of attention deficit hyperactivity disorder (ADHD) subtypes is important for the refined treatment of ADHD children. Although automated diagnosis methods based on machine learning are performed with structural and functional magnetic resonance imaging (sMRI and fMRI) data which have full observation of brains, they are not satisfactory with the accuracy of less than80%for the ADHD subtype diagnosis.Approach. To improve the accuracy and obtain the biomarker of ADHD subtypes, we proposed a hierarchical binary hypothesis testing (H-BHT) framework by using brain functional connectivity (FC) as input bio-signals. The framework includes a two-stage procedure with a decision tree strategy and thus becomes suitable for the subtype classification. Also, typical FC is extracted in both two stages of identifying ADHD subtypes. That means the important FC is found out for the subtype recognition.Main results. We apply the proposed H-BHT framework to resting state fMRI datasets from ADHD-200 consortium. The results are achieved with the average accuracy97.1%and an average kappa score 0.947. Discriminative FC between ADHD subtypes is found by comparing the P-values of typical FC.Significance. The proposed framework not only is an effective structure for ADHD subtype classification, but also provides useful reference for multiclass classification of mental disease subtypes.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.