DB-DCAFN: dual-branch deformable cross-attention fusion network for bacterial segmentation.

4区 计算机科学 Q1 Arts and Humanities
Jingkun Wang, Xinyu Ma, Long Cao, Yilin Leng, Zeyi Li, Zihan Cheng, Yuzhu Cao, Xiaoping Huang, Jian Zheng
{"title":"DB-DCAFN: dual-branch deformable cross-attention fusion network for bacterial segmentation.","authors":"Jingkun Wang,&nbsp;Xinyu Ma,&nbsp;Long Cao,&nbsp;Yilin Leng,&nbsp;Zeyi Li,&nbsp;Zihan Cheng,&nbsp;Yuzhu Cao,&nbsp;Xiaoping Huang,&nbsp;Jian Zheng","doi":"10.1186/s42492-023-00141-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from sputum smear images is important for improving diagnostic efficiency. However, this remains a challenging task owing to the high interclass similarity among different categories of bacteria and the low contrast of the bacterial edges. To explore more levels of global pattern features to promote the distinguishing ability of bacterial categories and maintain sufficient local fine-grained features to ensure accurate localization of ambiguous bacteria simultaneously, we propose a novel dual-branch deformable cross-attention fusion network (DB-DCAFN) for accurate bacterial segmentation. Specifically, we first designed a dual-branch encoder consisting of multiple convolution and transformer blocks in parallel to simultaneously extract multilevel local and global features. We then designed a sparse and deformable cross-attention module to capture the semantic dependencies between local and global features, which can bridge the semantic gap and fuse features effectively. Furthermore, we designed a feature assignment fusion module to enhance meaningful features using an adaptive feature weighting strategy to obtain more accurate segmentation. We conducted extensive experiments to evaluate the effectiveness of DB-DCAFN on a clinical dataset comprising three bacterial categories: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The experimental results demonstrate that the proposed DB-DCAFN outperforms other state-of-the-art methods and is effective at segmenting bacteria from sputum smear images.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"6 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-023-00141-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from sputum smear images is important for improving diagnostic efficiency. However, this remains a challenging task owing to the high interclass similarity among different categories of bacteria and the low contrast of the bacterial edges. To explore more levels of global pattern features to promote the distinguishing ability of bacterial categories and maintain sufficient local fine-grained features to ensure accurate localization of ambiguous bacteria simultaneously, we propose a novel dual-branch deformable cross-attention fusion network (DB-DCAFN) for accurate bacterial segmentation. Specifically, we first designed a dual-branch encoder consisting of multiple convolution and transformer blocks in parallel to simultaneously extract multilevel local and global features. We then designed a sparse and deformable cross-attention module to capture the semantic dependencies between local and global features, which can bridge the semantic gap and fuse features effectively. Furthermore, we designed a feature assignment fusion module to enhance meaningful features using an adaptive feature weighting strategy to obtain more accurate segmentation. We conducted extensive experiments to evaluate the effectiveness of DB-DCAFN on a clinical dataset comprising three bacterial categories: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The experimental results demonstrate that the proposed DB-DCAFN outperforms other state-of-the-art methods and is effective at segmenting bacteria from sputum smear images.

Abstract Image

Abstract Image

Abstract Image

DB-DCAFN:用于细菌分割的双分支可变形交叉注意融合网络。
痰涂片检查对呼吸道疾病的诊断至关重要。痰涂片图像中细菌的自动分割对提高诊断效率具有重要意义。然而,由于不同类别细菌之间的高类间相似性和细菌边缘的低对比度,这仍然是一项具有挑战性的任务。为了探索更多层次的全局模式特征以提高细菌类别的区分能力,同时保持足够的局部细粒度特征以确保模糊细菌的准确定位,我们提出了一种新的双分支可变形交叉注意融合网络(DB-DCAFN)用于准确的细菌分割。具体而言,我们首先设计了一个由多个卷积和变压器块并行组成的双支路编码器,以同时提取多级局部和全局特征。然后,我们设计了一个稀疏的、可变形的交叉注意模块来捕获局部和全局特征之间的语义依赖关系,从而有效地弥合语义鸿沟,融合特征。此外,我们设计了一个特征分配融合模块,使用自适应特征加权策略增强有意义的特征,以获得更准确的分割。我们进行了广泛的实验来评估DB-DCAFN在包括三种细菌类别的临床数据集上的有效性:鲍曼不动杆菌、肺炎克雷伯菌和铜绿假单胞菌。实验结果表明,所提出的DB-DCAFN优于其他最先进的方法,可以有效地从痰涂片图像中分割细菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信