Juhee Lee, Peter F. Thall, Bora Lim, Pavlos Msaouel
{"title":"Utility-based Bayesian personalized treatment selection for advanced breast cancer","authors":"Juhee Lee, Peter F. Thall, Bora Lim, Pavlos Msaouel","doi":"10.1111/rssc.12582","DOIUrl":null,"url":null,"abstract":"<p>A Bayesian method is proposed for personalized treatment selection in settings where data are available from a randomized clinical trial with two or more outcomes. The motivating application is a randomized trial that compared letrozole plus bevacizumab to letrozole alone as first-line therapy for hormone receptor-positive advanced breast cancer. The combination treatment arm had larger median progression-free survival time, but also a higher rate of severe toxicities. This suggests that the risk-benefit trade-off between these two outcomes should play a central role in selecting each patient's treatment, particularly since older patients are less likely to tolerate severe toxicities. To quantify the desirability of each possible outcome combination for an individual patient, we elicited from breast cancer oncologists a utility function that varied with age. The utility was used as an explicit criterion for quantifying risk-benefit trade-offs when making personalized treatment selections. A Bayesian nonparametric multivariate regression model with a dependent Dirichlet process prior was fit to the trial data. Under the fitted model, a new patient's treatment can be selected based on the posterior predictive utility distribution. For the breast cancer trial dataset, the optimal treatment depends on the patient's age, with the combination preferable for patients 70 years or younger and the single agent preferable for patients older than 70.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"71 5","pages":"1605-1622"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12582","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4
Abstract
A Bayesian method is proposed for personalized treatment selection in settings where data are available from a randomized clinical trial with two or more outcomes. The motivating application is a randomized trial that compared letrozole plus bevacizumab to letrozole alone as first-line therapy for hormone receptor-positive advanced breast cancer. The combination treatment arm had larger median progression-free survival time, but also a higher rate of severe toxicities. This suggests that the risk-benefit trade-off between these two outcomes should play a central role in selecting each patient's treatment, particularly since older patients are less likely to tolerate severe toxicities. To quantify the desirability of each possible outcome combination for an individual patient, we elicited from breast cancer oncologists a utility function that varied with age. The utility was used as an explicit criterion for quantifying risk-benefit trade-offs when making personalized treatment selections. A Bayesian nonparametric multivariate regression model with a dependent Dirichlet process prior was fit to the trial data. Under the fitted model, a new patient's treatment can be selected based on the posterior predictive utility distribution. For the breast cancer trial dataset, the optimal treatment depends on the patient's age, with the combination preferable for patients 70 years or younger and the single agent preferable for patients older than 70.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.