{"title":"The Regulation Network of Glycerolipid Metabolism as Coregulators of Immunotherapy-Related Myocarditis.","authors":"Xiguang Yang, Xiaopeng Duan, Zhenglin Xia, Rui Huang, Ke He, Guoan Xiang","doi":"10.1155/2023/8774971","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To date, immunotherapy for patients with malignant tumors has shown a significant association with myocarditis. However, the mechanism of metabolic reprogramming changes for immunotherapy-related cardiotoxicity is still not well understood.</p><p><strong>Methods: </strong>The CD45<sup>+</sup> single-cell RNA sequencing (scRNA-seq) of the Pdcd1<sup>-/-</sup>Ctla4<sup>+/-</sup> and wild-type mouse heart in GSE213486 was downloaded to demonstrate the heterogeneity of immunocyte atlas in immunotherapy-related myocarditis. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectrum metabolomics analysis detects the metabolic network differences. The drug prediction, organelle level interaction, mitochondrial level regulatory network, and phosphorylation site prediction for key regulators have also been screened via multibioinformatics analysis methods.</p><p><strong>Results: </strong>The scRNA analysis shows that the T cell is the main regulatory cell subpopulation in the pathological progress of immunotherapy-related myocarditis. Mitochondrial regulation pathway significantly participated in pseudotime trajectory- (PTT-) related differential expressed genes (DEGs) in the T cell subpopulation. Additionally, both the gene set enrichment analysis (GSEA) of PTT-related DEGs and LC-MS/MS metabolomics analysis showed that mitochondrial-regulated glycerolipid metabolism plays a central role in metabolic reprogramming changes for immunotherapy-related cardiotoxicity. Finally, the hub-regulated protease of diacylglycerol kinase zeta (Dgkz) was significantly identified and widely played various roles in glycerolipid metabolism, oxidative phosphorylation, and lipid kinase activation.</p><p><strong>Conclusion: </strong>Mitochondrial-regulated glycerolipid metabolism, especially the DGKZ protein, plays a key role in the metabolic reprogramming of immunotherapy-related myocarditis.</p>","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":"2023 ","pages":"8774971"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/8774971","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To date, immunotherapy for patients with malignant tumors has shown a significant association with myocarditis. However, the mechanism of metabolic reprogramming changes for immunotherapy-related cardiotoxicity is still not well understood.
Methods: The CD45+ single-cell RNA sequencing (scRNA-seq) of the Pdcd1-/-Ctla4+/- and wild-type mouse heart in GSE213486 was downloaded to demonstrate the heterogeneity of immunocyte atlas in immunotherapy-related myocarditis. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectrum metabolomics analysis detects the metabolic network differences. The drug prediction, organelle level interaction, mitochondrial level regulatory network, and phosphorylation site prediction for key regulators have also been screened via multibioinformatics analysis methods.
Results: The scRNA analysis shows that the T cell is the main regulatory cell subpopulation in the pathological progress of immunotherapy-related myocarditis. Mitochondrial regulation pathway significantly participated in pseudotime trajectory- (PTT-) related differential expressed genes (DEGs) in the T cell subpopulation. Additionally, both the gene set enrichment analysis (GSEA) of PTT-related DEGs and LC-MS/MS metabolomics analysis showed that mitochondrial-regulated glycerolipid metabolism plays a central role in metabolic reprogramming changes for immunotherapy-related cardiotoxicity. Finally, the hub-regulated protease of diacylglycerol kinase zeta (Dgkz) was significantly identified and widely played various roles in glycerolipid metabolism, oxidative phosphorylation, and lipid kinase activation.
Conclusion: Mitochondrial-regulated glycerolipid metabolism, especially the DGKZ protein, plays a key role in the metabolic reprogramming of immunotherapy-related myocarditis.
期刊介绍:
Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged.
Subject areas include (but are by no means limited to):
Acute coronary syndrome
Arrhythmias
Atherosclerosis
Basic cardiac electrophysiology
Cardiac catheterization
Cardiac remodeling
Coagulation and thrombosis
Diabetic cardiovascular disease
Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF)
Hyperlipidemia
Hypertension
Ischemic heart disease
Vascular biology
Ventricular assist devices
Molecular cardio-biology
Myocardial regeneration
Lipoprotein metabolism
Radial artery access
Percutaneous coronary intervention
Transcatheter aortic and mitral valve replacement.