Unraveling the impact of ORF3a Q57H mutation on SARS-CoV-2: insights from molecular dynamics.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Md Jahirul Islam, Md Siddik Alom, Md Shahadat Hossain, Md Ackas Ali, Shaila Akter, Shafiqul Islam, M Obayed Ullah, Mohammad A Halim
{"title":"Unraveling the impact of ORF3a Q57H mutation on SARS-CoV-2: insights from molecular dynamics.","authors":"Md Jahirul Islam, Md Siddik Alom, Md Shahadat Hossain, Md Ackas Ali, Shaila Akter, Shafiqul Islam, M Obayed Ullah, Mohammad A Halim","doi":"10.1080/07391102.2023.2252908","DOIUrl":null,"url":null,"abstract":"<p><p>ORF3a is a conserved accessory protein of SARS-CoV-2, linked to viral infection and pathogenesis, with acquired mutations at various locations. Previous studies have shown that the occurrence of the Q57H mutation is higher in comparison to other positions in ORF3a. This mutation is known to induce conformational changes, yet the extent of structural alteration and its role in the viral adaptation process remain unknown. Here we performed molecular dynamics (MD) simulations of wt-ORF3a, Q57H, and Q57A mutants to analyze structural changes caused by mutations compared to the native protein. The MD analysis revealed that Q57H and Q57A mutants show significant structural changes in the dimer conformation than the wt-ORF3a. This dimer conformer narrows down the ion channel cavity, which reduces Na + or K + permeability leading to decrease the antigenic response that can help the virus to escape the host immune system. Non-bonding interaction analysis shows the Q57H mutant has more interacting residues, resulting in more stability within dimer conformation than the wt-ORF3a and Q57A. Moreover, both mutant dimers (Q57H and Q57A) form a novel salt-bridge interaction at the same position between A:Asp142 and B:Lys61, whereas such an interaction is absent in the wt-ORF3a dimer. We have also noticed that the TM3 domain's flexibility in Q57H is increased because of strong inter-domain interactions of TM1 and TM2 within the dimer conformation. These unusual interactions and flexibility of Q57H mutant can have significant impacts on the SARS-CoV-2 adaptations, virulence, transmission, and immune system evasion. Our findings are consistent with the previous experimental data and provided details information on the structural perturbation in ORF3a caused by mutations, which can help better understand the structural change at the molecular level as well as the reason for the high virulence properties of this variant.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9753-9766"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252908","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ORF3a is a conserved accessory protein of SARS-CoV-2, linked to viral infection and pathogenesis, with acquired mutations at various locations. Previous studies have shown that the occurrence of the Q57H mutation is higher in comparison to other positions in ORF3a. This mutation is known to induce conformational changes, yet the extent of structural alteration and its role in the viral adaptation process remain unknown. Here we performed molecular dynamics (MD) simulations of wt-ORF3a, Q57H, and Q57A mutants to analyze structural changes caused by mutations compared to the native protein. The MD analysis revealed that Q57H and Q57A mutants show significant structural changes in the dimer conformation than the wt-ORF3a. This dimer conformer narrows down the ion channel cavity, which reduces Na + or K + permeability leading to decrease the antigenic response that can help the virus to escape the host immune system. Non-bonding interaction analysis shows the Q57H mutant has more interacting residues, resulting in more stability within dimer conformation than the wt-ORF3a and Q57A. Moreover, both mutant dimers (Q57H and Q57A) form a novel salt-bridge interaction at the same position between A:Asp142 and B:Lys61, whereas such an interaction is absent in the wt-ORF3a dimer. We have also noticed that the TM3 domain's flexibility in Q57H is increased because of strong inter-domain interactions of TM1 and TM2 within the dimer conformation. These unusual interactions and flexibility of Q57H mutant can have significant impacts on the SARS-CoV-2 adaptations, virulence, transmission, and immune system evasion. Our findings are consistent with the previous experimental data and provided details information on the structural perturbation in ORF3a caused by mutations, which can help better understand the structural change at the molecular level as well as the reason for the high virulence properties of this variant.Communicated by Ramaswamy H. Sarma.

揭示 ORF3a Q57H 突变对 SARS-CoV-2 的影响:分子动力学的启示。
ORF3a 是 SARS-CoV-2 的保守附属蛋白,与病毒感染和致病机制有关,在不同位置存在获得性突变。先前的研究表明,与 ORF3a 的其他位置相比,Q57H 突变的发生率更高。众所周知,这种突变会诱导构象变化,但其结构改变的程度及其在病毒适应过程中的作用仍然未知。在这里,我们对wt-ORF3a、Q57H和Q57A突变体进行了分子动力学(MD)模拟,以分析与原生蛋白相比,突变引起的结构变化。MD 分析表明,与 wt-ORF3a 相比,Q57H 和 Q57A 突变体的二聚体构象发生了显著的结构变化。这种二聚体构象使离子通道腔变窄,从而降低了 Na + 或 K + 的通透性,导致抗原反应减弱,从而帮助病毒逃离宿主免疫系统。非键相互作用分析表明,与 wt-ORF3a 和 Q57A 相比,Q57H 突变体有更多的相互作用残基,因而在二聚体构象中更加稳定。此外,两种突变体二聚体(Q57H 和 Q57A)在 A:Asp142 和 B:Lys61 之间的相同位置形成了一种新的盐桥相互作用,而 wt-ORF3a 二聚体中不存在这种相互作用。我们还注意到,在 Q57H 中,由于 TM1 和 TM2 在二聚体构象中具有很强的结构域间相互作用,因此 TM3 结构域的灵活性增加了。Q57H 突变体的这些不寻常的相互作用和灵活性可能会对 SARS-CoV-2 的适应性、毒力、传播和免疫系统规避产生重大影响。我们的研究结果与之前的实验数据一致,并提供了突变引起的ORF3a结构扰动的详细信息,这有助于更好地理解分子水平的结构变化以及该变体高毒力特性的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信