Dose-dependent progression of multiple low-dose streptozotocin-induced diabetes in mice.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Physiological genomics Pub Date : 2023-09-01 Epub Date: 2023-07-17 DOI:10.1152/physiolgenomics.00032.2023
Brandon M Bauer, Supriyo Bhattacharya, Elizabeth Bloom-Saldana, Jose M Irimia-Dominguez, Patrick T Fueger
{"title":"Dose-dependent progression of multiple low-dose streptozotocin-induced diabetes in mice.","authors":"Brandon M Bauer, Supriyo Bhattacharya, Elizabeth Bloom-Saldana, Jose M Irimia-Dominguez, Patrick T Fueger","doi":"10.1152/physiolgenomics.00032.2023","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00032.2023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.

多剂量链脲佐菌素诱导的小鼠糖尿病的剂量依赖性进展。
本研究研究了不同多次低剂量链脲佐菌素(STZ)(即35和55mg/kg)对小鼠糖尿病发作和进展的影响。这两种剂量在研究中都很常用,尽管两者都诱导了β细胞质量的损失,但它们对全糖耐量、β细胞功能和基因转录有不同的影响。用55 mg/kg治疗的小鼠迅速变得葡萄糖不耐受,而用35 mg/kg治疗的老鼠发病较慢,并在变得与55 mg/kg组一样葡萄糖不耐受之前保持葡萄糖耐受长达一周。两组之间的β细胞质量损失相似,但在金标准高血糖钳夹研究中,35 mg/kg治疗的小鼠改善了葡萄糖刺激的胰岛素分泌。转录组学分析显示,在分离的胰岛中,55 mg/kg剂量引起的基因破坏几乎是35 mg/kg剂量的五倍。在两种剂量下下调的途径在55 mg/kg治疗的小鼠中更为下调,而在35 mg/kg治疗的鼠中上调的途径更为上调。此外,我们在55 mg/kg处理的胰岛中观察到β细胞特征性途径的差异性下调,如胞吐或激素分泌。另一方面,在35mg/kg处理的胰岛中,细胞凋亡差异上调,这表明STZ诱导的胰岛损伤的发生有不同的转录机制。这项研究表明,两种STZ剂量诱导了功能性β细胞质量损失的明显机制进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信