From sleep to cancer to neurodegenerative disease: the crucial role of Hsp70 in maintaining cellular homeostasis and potential therapeutic implications.
{"title":"From sleep to cancer to neurodegenerative disease: the crucial role of Hsp70 in maintaining cellular homeostasis and potential therapeutic implications.","authors":"Shampa Ghosh, Kshitij Vashisth, Soumya Ghosh, Sung Soo Han, Rakesh Bhaskar, Jitendra Kumar Sinha","doi":"10.1080/07391102.2023.2252509","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep is a fundamental process essential for reparatory and restorative mechanisms in all organisms. Recent research has linked sleep to various pathological conditions, including cancer and neurodegeneration, which are associated with various molecular changes in different cellular environments. Despite the potential significance of various molecules, the HSPA1A or Hsp70 protein, which has possible connections with sleep and different neuropsychological and pathological disorders, has been explored the least. This paper explores the potential for manipulating and discovering drugs related to the Hsp70 protein to alleviate sleep problems and improve the prognosis for various other health issues. This paper discusses the critical role of Hsp70 in cancer, neurodegeneration, apoptosis, sleep, and its regulation at the structural level through allosteric mechanisms and different substrates. The significant impact of Hsp70's connection to various conditions suggests that existing sleep medicine could be used to improve such conditions, leading to improved outcomes, minimized research costs, and a new direction for current research. Overall, this paper highlights the potential of Hsp70 protein as a key therapeutic target for developing new drugs for the treatment of sleep disorders, cancer, neurodegeneration, and other related pathological conditions. Further research into the molecular mechanisms of Hsp70 regulation and its interactions with other cellular pathways is necessary to develop targeted treatments for these conditions.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9812-9823"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252509","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep is a fundamental process essential for reparatory and restorative mechanisms in all organisms. Recent research has linked sleep to various pathological conditions, including cancer and neurodegeneration, which are associated with various molecular changes in different cellular environments. Despite the potential significance of various molecules, the HSPA1A or Hsp70 protein, which has possible connections with sleep and different neuropsychological and pathological disorders, has been explored the least. This paper explores the potential for manipulating and discovering drugs related to the Hsp70 protein to alleviate sleep problems and improve the prognosis for various other health issues. This paper discusses the critical role of Hsp70 in cancer, neurodegeneration, apoptosis, sleep, and its regulation at the structural level through allosteric mechanisms and different substrates. The significant impact of Hsp70's connection to various conditions suggests that existing sleep medicine could be used to improve such conditions, leading to improved outcomes, minimized research costs, and a new direction for current research. Overall, this paper highlights the potential of Hsp70 protein as a key therapeutic target for developing new drugs for the treatment of sleep disorders, cancer, neurodegeneration, and other related pathological conditions. Further research into the molecular mechanisms of Hsp70 regulation and its interactions with other cellular pathways is necessary to develop targeted treatments for these conditions.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.