Chalcones reloaded: an integration of network pharmacology and molecular docking for type 2 diabetes therapy.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sarvesh Sabarathinam, Nila Ganamurali
{"title":"Chalcones reloaded: an integration of network pharmacology and molecular docking for type 2 diabetes therapy.","authors":"Sarvesh Sabarathinam, Nila Ganamurali","doi":"10.1080/07391102.2023.2252085","DOIUrl":null,"url":null,"abstract":"<p><p>Chalcones have various biological effects, from immune boosting to anti-cancer and anti-diabetic. Structurally modified chalcones (SMC) are clinically relevant for diabetes and cardiometabolic complications. From the original research articles, a structurally proven and biologically outstanding 14 structurally modified chalcones were screened and inducted in this study. This study evaluated the effects of SMC towards diabetes <i>via</i> network pharmacology analysis. The network data shows compounds S2, S3, S5, S9 &S12 suit the diabetes target. Especially Compounds S5 and S9 have a higher binding affinity towards the targets of TNF, PI3K, MAPK1 and AKT1 active sites. Compound S9 [(E)-3-(4-(1H-imidazol-1-yl)phenyl)-1-(4-(2,4-difluorobenz-yloxy)phenyl)prop-2-en-1-one] have identified with stronger binding affinities towards the active sites of MAPK3 (PDB:4QTB) -10.5(Kcal/mol). To provide a more effective mechanism for demonstrating protein-ligand interaction, one of the molecular docking complex (ERK2 kinase-S5) was subjected to a molecular dynamic at 300K for 100 ns. In term of structural stability, structure compactness, residual flexibility and hydrogen bond interaction of the complex was evaluated Integrating network pharmacology, <i>in silico</i> virtual screening, and molecular docking analysis shows that structurally modified compounds are effective and may help identify lead compounds towards glycemic control.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9505-9517"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252085","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chalcones have various biological effects, from immune boosting to anti-cancer and anti-diabetic. Structurally modified chalcones (SMC) are clinically relevant for diabetes and cardiometabolic complications. From the original research articles, a structurally proven and biologically outstanding 14 structurally modified chalcones were screened and inducted in this study. This study evaluated the effects of SMC towards diabetes via network pharmacology analysis. The network data shows compounds S2, S3, S5, S9 &S12 suit the diabetes target. Especially Compounds S5 and S9 have a higher binding affinity towards the targets of TNF, PI3K, MAPK1 and AKT1 active sites. Compound S9 [(E)-3-(4-(1H-imidazol-1-yl)phenyl)-1-(4-(2,4-difluorobenz-yloxy)phenyl)prop-2-en-1-one] have identified with stronger binding affinities towards the active sites of MAPK3 (PDB:4QTB) -10.5(Kcal/mol). To provide a more effective mechanism for demonstrating protein-ligand interaction, one of the molecular docking complex (ERK2 kinase-S5) was subjected to a molecular dynamic at 300K for 100 ns. In term of structural stability, structure compactness, residual flexibility and hydrogen bond interaction of the complex was evaluated Integrating network pharmacology, in silico virtual screening, and molecular docking analysis shows that structurally modified compounds are effective and may help identify lead compounds towards glycemic control.Communicated by Ramaswamy H. Sarma.

重装查耳酮:网络药理学与分子对接在 2 型糖尿病治疗中的整合。
查耳酮具有多种生物效应,包括增强免疫力、抗癌和抗糖尿病。结构修饰查耳酮(SMC)对糖尿病和心脏代谢并发症具有临床意义。本研究从原始研究文章中筛选出了 14 种结构可靠、生物特性突出的结构修饰查耳酮。本研究通过网络药理学分析评估了 SMC 对糖尿病的影响。网络数据显示,化合物 S2、S3、S5、S9 和 S12 适合糖尿病靶点。特别是化合物 S5 和 S9 与 TNF、PI3K、MAPK1 和 AKT1 活性位点的结合亲和力更高。化合物 S9 [(E)-3-(4-(1H-咪唑-1-基)苯基)-1-(4-(2,4-二氟苯氧基)苯基)丙-2-烯-1-酮] 与 MAPK3(PDB:4QTB)活性位点的结合亲和力为-10.5(Kcal/mol)。为了更有效地证明蛋白质与配体的相互作用机制,其中一个分子对接复合物(ERK2 激酶-S5)在 300K 条件下进行了 100 ns 的分子动力学实验。综合网络药理学、硅学虚拟筛选和分子对接分析表明,结构修饰的化合物是有效的,可能有助于确定控制血糖的先导化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信