[Experimental and numerical investigation of fluid-particle-interactions in water].

T Gold, D Worf, K Reiterer, H Habersack, C Sindelar
{"title":"[Experimental and numerical investigation of fluid-particle-interactions in water].","authors":"T Gold,&nbsp;D Worf,&nbsp;K Reiterer,&nbsp;H Habersack,&nbsp;C Sindelar","doi":"10.1007/s00506-023-00960-2","DOIUrl":null,"url":null,"abstract":"<p><p>For the development of improved sediment transport models, the basic understanding of the interaction between the solid particle and the moving fluid (water) is important. In this article, current developments in the field of fluid-particle interaction are presented based on two research articles by Gold et al. (2023) and Worf et al. (2022). One presented in this article uses state of the art measurement methods to investigate the flow around spheres of different densities that oscillate in initially resting body of water. For the spherical pendulum a similar vortex shedding characteristic was observed for all investigated fluid density ratios (<math><msup><mi>m</mi><mi>*</mi></msup><mo>=</mo><mrow><msub><mi>ρ</mi><mi>S</mi></msub><mo>/</mo><mrow><msub><mi>ρ</mi><mrow><mi>F</mi></mrow></msub><mo>=</mo><mn>1.14</mn><mo>,</mo><mn>14.95</mn></mrow></mrow></math>, density ratio between solid and fluid). A new object tracking method (DOT) is also presented, which enables temporally and spatially resolved analysis of flow structures in the fluid field. The experimental results of Gold et al. (2023) show, that vortex shedding occurs during the first period. This vortex propagates downward and eventually dissipates. Furthermore, a damping optimum of the spherical pendulum in the range of <math><msup><mi>m</mi><mi>*</mi></msup><mo>=</mo><mn>2.50</mn></math> was observed. Additionally, an experiment with a cylindrical pendulum with <math><msup><mi>m</mi><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>4</mn><mrow><mo>.</mo></mrow><mn>98</mn></math> was investigated numerically utilizing an immersed boundary method. The process of creation and separation up to the dissipation of a vortex ring was described. Furthermore, this investigation by Worf et al. (2022) described the creation of tip vortices. These were connected with the development of the three-dimensional flow and added mass coefficient.</p>","PeriodicalId":74380,"journal":{"name":"Osterreichische Wasser- und Abfallwirtschaft","volume":"75 7-8","pages":"442-448"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451997/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osterreichische Wasser- und Abfallwirtschaft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00506-023-00960-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the development of improved sediment transport models, the basic understanding of the interaction between the solid particle and the moving fluid (water) is important. In this article, current developments in the field of fluid-particle interaction are presented based on two research articles by Gold et al. (2023) and Worf et al. (2022). One presented in this article uses state of the art measurement methods to investigate the flow around spheres of different densities that oscillate in initially resting body of water. For the spherical pendulum a similar vortex shedding characteristic was observed for all investigated fluid density ratios (m*=ρS/ρF=1.14,14.95, density ratio between solid and fluid). A new object tracking method (DOT) is also presented, which enables temporally and spatially resolved analysis of flow structures in the fluid field. The experimental results of Gold et al. (2023) show, that vortex shedding occurs during the first period. This vortex propagates downward and eventually dissipates. Furthermore, a damping optimum of the spherical pendulum in the range of m*=2.50 was observed. Additionally, an experiment with a cylindrical pendulum with m=4.98 was investigated numerically utilizing an immersed boundary method. The process of creation and separation up to the dissipation of a vortex ring was described. Furthermore, this investigation by Worf et al. (2022) described the creation of tip vortices. These were connected with the development of the three-dimensional flow and added mass coefficient.

Abstract Image

Abstract Image

Abstract Image

[水中流体-颗粒相互作用的实验和数值研究]。
对于改进的泥沙输移模型的开发,对固体颗粒和运动流体(水)之间相互作用的基本理解是重要的。本文在Gold等人的两篇研究文章的基础上,介绍了流体与颗粒相互作用领域的最新进展。(2023)和Worf等人。(2022)。本文中提出的一种方法使用最先进的测量方法来研究在初始静止水体中振荡的不同密度球体周围的流动。对于球形摆,在所有研究的流体密度比(m*=ρS/ρF=1.14,14.95,固体和流体之间的密度比)下都观察到类似的旋涡脱落特性。还提出了一种新的物体跟踪方法(DOT),该方法能够对流场中的流动结构进行时间和空间分辨分析。Gold等人的实验结果。(2023)表明,旋涡脱落发生在第一阶段。这个涡流向下传播并最终消散。此外,在m*=2.50的范围内观察到球面摆的阻尼最优值。此外,利用浸入边界法对m*=4.98的圆柱形摆的实验进行了数值研究。描述了涡流环的产生和分离直至消散的过程。此外,Worf等人。(2022)描述了尖端涡流的产生。这些都与三维流动的发展和附加的质量系数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信