Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Norine Dsouza, Selvaa Kumar C
{"title":"Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach.","authors":"Norine Dsouza, Selvaa Kumar C","doi":"10.1080/07391102.2023.2252084","DOIUrl":null,"url":null,"abstract":"<p><p>The infectious Nipah virus (NiV) is categorized into NiV-M (Malaysia) and NiV-B (Bangladesh) groups based on its genome comparison, pathogenicity, and mortality rate. The development of therapeutic molecules has used NiV-M-derived data in multiple studies than NiV-B. In continuation with this, the protein level investigation is also less explored to understand the interaction with therapeutic neutralizing antibodies for NiV-B. So, this study focuses on understanding the impact of NiV-B-specific mutations on the interaction of therapeutic neutralizing antibodies with the G protein. The population-based comparative analysis of NiV-B G protein sequences with NiV-M sequence identified twenty-six mutations. These predominantly polar mutations were then used to model the mutant protein (G_MT). In a comparative study, the G protein G_MT and reference protein G_WT (Malaysian origin) were subjected to a protein docking with neutralizing human monoclonal antibody HENV26. The binding affinity and the free binding energy of the glycoprotein in complex with G-WT and G_MT were calculated using PRODIGY and MM/PBSA tools respectively. Based on the PRODIGY report, G-WT showed stronger binding (-13.8 kcal/mol) compared to that of the G_MT (-9.0 kcal/mol) with the HENV26 antibody. The stability of the complexes was evaluated using MM/PBSA which showed higher binding energy with HENV26 for G_WT (-75.11 kcal/mol) in contrast to G_MT (-41.66 kcal/mol). The results indicate that the mutant G protein has a reduced ability to bind to neutralizing antibodies, resulting in a decreased effectiveness against strains carrying these mutations.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9388-9398"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The infectious Nipah virus (NiV) is categorized into NiV-M (Malaysia) and NiV-B (Bangladesh) groups based on its genome comparison, pathogenicity, and mortality rate. The development of therapeutic molecules has used NiV-M-derived data in multiple studies than NiV-B. In continuation with this, the protein level investigation is also less explored to understand the interaction with therapeutic neutralizing antibodies for NiV-B. So, this study focuses on understanding the impact of NiV-B-specific mutations on the interaction of therapeutic neutralizing antibodies with the G protein. The population-based comparative analysis of NiV-B G protein sequences with NiV-M sequence identified twenty-six mutations. These predominantly polar mutations were then used to model the mutant protein (G_MT). In a comparative study, the G protein G_MT and reference protein G_WT (Malaysian origin) were subjected to a protein docking with neutralizing human monoclonal antibody HENV26. The binding affinity and the free binding energy of the glycoprotein in complex with G-WT and G_MT were calculated using PRODIGY and MM/PBSA tools respectively. Based on the PRODIGY report, G-WT showed stronger binding (-13.8 kcal/mol) compared to that of the G_MT (-9.0 kcal/mol) with the HENV26 antibody. The stability of the complexes was evaluated using MM/PBSA which showed higher binding energy with HENV26 for G_WT (-75.11 kcal/mol) in contrast to G_MT (-41.66 kcal/mol). The results indicate that the mutant G protein has a reduced ability to bind to neutralizing antibodies, resulting in a decreased effectiveness against strains carrying these mutations.Communicated by Ramaswamy H. Sarma.

预测中和抗体与来自孟加拉国尼帕病毒分离物的 G 蛋白相互作用的变化:基于分子动力学的方法。
根据基因组比较、致病性和死亡率,传染性尼帕病毒(NiV)被分为 NiV-M(马来西亚)和 NiV-B(孟加拉国)两组。与 NiV-B 相比,在多项研究中,治疗分子的开发都使用了从 NiV-M 提取的数据。与此同时,蛋白质水平的研究也较少被用于了解 NiV-B 与治疗性中和抗体的相互作用。因此,本研究侧重于了解 NiV-B 特异性突变对治疗性中和抗体与 G 蛋白相互作用的影响。通过对 NiV-B G 蛋白序列与 NiV-M 序列进行群体比较分析,发现了 26 个突变。这些主要是极性突变的基因随后被用于突变蛋白(G_MT)的建模。在一项比较研究中,G 蛋白 G_MT 和参考蛋白 G_WT(马来西亚来源)与中和人类单克隆抗体 HENV26 进行了蛋白对接。使用 PRODIGY 和 MM/PBSA 工具分别计算了糖蛋白与 G-WT 和 G_MT 复合物的结合亲和力和自由结合能。根据 PRODIGY 报告,G-WT 与 HENV26 抗体的结合力(-13.8 kcal/mol)强于 G_MT(-9.0 kcal/mol)。使用 MM/PBSA 评估了复合物的稳定性,结果显示 G_WT 与 HENV26 的结合能(-75.11 kcal/mol)高于 G_MT(-41.66 kcal/mol)。结果表明,突变的G蛋白与中和抗体结合的能力降低,导致对携带这些突变的菌株的效力下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信