Diabetic Retinopathy Screening Using Smartphone-Based Fundus Photography and Deep-Learning Artificial Intelligence in the Yucatan Peninsula: A Field Study.
John J Wroblewski, Ermilo Sanchez-Buenfil, Miguel Inciarte, Jay Berdia, Lewis Blake, Simon Wroblewski, Alexandria Patti, Gretchen Suter, George E Sanborn
{"title":"Diabetic Retinopathy Screening Using Smartphone-Based Fundus Photography and Deep-Learning Artificial Intelligence in the Yucatan Peninsula: A Field Study.","authors":"John J Wroblewski, Ermilo Sanchez-Buenfil, Miguel Inciarte, Jay Berdia, Lewis Blake, Simon Wroblewski, Alexandria Patti, Gretchen Suter, George E Sanborn","doi":"10.1177/19322968231194644","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To compare the performance of Medios (offline) and EyeArt (online) artificial intelligence (AI) algorithms for detecting diabetic retinopathy (DR) on images captured using fundus-on-smartphone photography in a remote outreach field setting.</p><p><strong>Methods: </strong>In June, 2019 in the Yucatan Peninsula, 248 patients, many of whom had chronic visual impairment, were screened for DR using two portable Remidio fundus-on-phone cameras, and 2130 images obtained were analyzed, retrospectively, by Medios and EyeArt. Screening performance metrics also were determined retrospectively using masked image analysis combined with clinical examination results as the reference standard.</p><p><strong>Results: </strong>A total of 129 patients were determined to have some level of DR; 119 patients had no DR. Medios was capable of evaluating every patient with a sensitivity (95% confidence intervals [CIs]) of 94% (88%-97%) and specificity of 94% (88%-98%). Owing primarily to photographer error, EyeArt evaluated 156 patients with a sensitivity of 94% (86%-98%) and specificity of 86% (77%-93%). In a head-to-head comparison of 110 patients, the sensitivities of Medios and EyeArt were 99% (93%-100%) and 95% (87%-99%). The specificities for both were 88% (73%-97%).</p><p><strong>Conclusions: </strong>Medios and EyeArt AI algorithms demonstrated high levels of sensitivity and specificity for detecting DR when applied in this real-world field setting. Both programs should be considered in remote, large-scale DR screening campaigns where immediate results are desirable, and in the case of EyeArt, online access is possible.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"370-376"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968231194644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To compare the performance of Medios (offline) and EyeArt (online) artificial intelligence (AI) algorithms for detecting diabetic retinopathy (DR) on images captured using fundus-on-smartphone photography in a remote outreach field setting.
Methods: In June, 2019 in the Yucatan Peninsula, 248 patients, many of whom had chronic visual impairment, were screened for DR using two portable Remidio fundus-on-phone cameras, and 2130 images obtained were analyzed, retrospectively, by Medios and EyeArt. Screening performance metrics also were determined retrospectively using masked image analysis combined with clinical examination results as the reference standard.
Results: A total of 129 patients were determined to have some level of DR; 119 patients had no DR. Medios was capable of evaluating every patient with a sensitivity (95% confidence intervals [CIs]) of 94% (88%-97%) and specificity of 94% (88%-98%). Owing primarily to photographer error, EyeArt evaluated 156 patients with a sensitivity of 94% (86%-98%) and specificity of 86% (77%-93%). In a head-to-head comparison of 110 patients, the sensitivities of Medios and EyeArt were 99% (93%-100%) and 95% (87%-99%). The specificities for both were 88% (73%-97%).
Conclusions: Medios and EyeArt AI algorithms demonstrated high levels of sensitivity and specificity for detecting DR when applied in this real-world field setting. Both programs should be considered in remote, large-scale DR screening campaigns where immediate results are desirable, and in the case of EyeArt, online access is possible.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.