Rachel Gehlhar , Maegan Tucker , Aaron J. Young , Aaron D. Ames
{"title":"A review of current state-of-the-art control methods for lower-limb powered prostheses","authors":"Rachel Gehlhar , Maegan Tucker , Aaron J. Young , Aaron D. Ames","doi":"10.1016/j.arcontrol.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Lower-limb prostheses aim to restore ambulatory function for individuals with lower-limb amputations. While the design of lower-limb prostheses is important, this paper focuses on the complementary challenge—the control of lower-limb prostheses. Specifically, we focus on powered prostheses, a subset of lower-limb prostheses, which utilize actuators to inject mechanical power into the walking gait of a human user.</p><p>In this paper, we present a review of existing control strategies for lower-limb powered prostheses, including the control objectives, sensing capabilities, and control methodologies. We separate the various control methods into three main tiers of prosthesis control: High-level control for task and gait phase estimation, mid-level control for desired torque computation (both with and without the use of reference trajectories), and low-level control for enforcing the computed torque commands on the prosthesis. In particular, we focus on the high- and mid-level control approaches in this review. Additionally, we outline existing methods for customizing the prosthetic behavior for individual human users. Finally, we conclude with a discussion on future research directions for powered lower-limb prostheses based on the potential of current control methods and open problems in the field.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 142-164"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449377/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136757882300007X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Lower-limb prostheses aim to restore ambulatory function for individuals with lower-limb amputations. While the design of lower-limb prostheses is important, this paper focuses on the complementary challenge—the control of lower-limb prostheses. Specifically, we focus on powered prostheses, a subset of lower-limb prostheses, which utilize actuators to inject mechanical power into the walking gait of a human user.
In this paper, we present a review of existing control strategies for lower-limb powered prostheses, including the control objectives, sensing capabilities, and control methodologies. We separate the various control methods into three main tiers of prosthesis control: High-level control for task and gait phase estimation, mid-level control for desired torque computation (both with and without the use of reference trajectories), and low-level control for enforcing the computed torque commands on the prosthesis. In particular, we focus on the high- and mid-level control approaches in this review. Additionally, we outline existing methods for customizing the prosthetic behavior for individual human users. Finally, we conclude with a discussion on future research directions for powered lower-limb prostheses based on the potential of current control methods and open problems in the field.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.