{"title":"Controllable Medical Image Generation via GAN.","authors":"Zhihang Ren, Stella X Yu, David Whitney","doi":"10.2352/j.percept.imaging.2022.5.000502","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image data is critically important for a range of disciplines, including medical image perception research, clinician training programs, and computer vision algorithms, among many other applications. Authentic medical image data, unfortunately, is relatively scarce for many of these uses. Because of this, researchers often collect their own data in nearby hospitals, which limits the generalizabilty of the data and findings. Moreover, even when larger datasets become available, they are of limited use because of the necessary data processing procedures such as de-identification, labeling, and categorizing, which requires significant time and effort. Thus, in some applications, including behavioral experiments on medical image perception, researchers have used naive artificial medical images (e.g., shapes or textures that are not realistic). These artificial medical images are easy to generate and manipulate, but the lack of authenticity inevitably raises questions about the applicability of the research to clinical practice. Recently, with the great progress in Generative Adversarial Networks (GAN), authentic images can be generated with high quality. In this paper, we propose to use GAN to generate authentic medical images for medical imaging studies. We also adopt a controllable method to manipulate the generated image attributes such that these images can satisfy any arbitrary experimenter goals, tasks, or stimulus settings. We have tested the proposed method on various medical image modalities, including mammogram, MRI, CT, and skin cancer images. The generated authentic medical images verify the success of the proposed method. The model and generated images could be employed in any medical image perception research.</p>","PeriodicalId":73895,"journal":{"name":"Journal of perceptual imaging","volume":"5 ","pages":"0005021-50215"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448967/pdf/nihms-1871254.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of perceptual imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/j.percept.imaging.2022.5.000502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Medical image data is critically important for a range of disciplines, including medical image perception research, clinician training programs, and computer vision algorithms, among many other applications. Authentic medical image data, unfortunately, is relatively scarce for many of these uses. Because of this, researchers often collect their own data in nearby hospitals, which limits the generalizabilty of the data and findings. Moreover, even when larger datasets become available, they are of limited use because of the necessary data processing procedures such as de-identification, labeling, and categorizing, which requires significant time and effort. Thus, in some applications, including behavioral experiments on medical image perception, researchers have used naive artificial medical images (e.g., shapes or textures that are not realistic). These artificial medical images are easy to generate and manipulate, but the lack of authenticity inevitably raises questions about the applicability of the research to clinical practice. Recently, with the great progress in Generative Adversarial Networks (GAN), authentic images can be generated with high quality. In this paper, we propose to use GAN to generate authentic medical images for medical imaging studies. We also adopt a controllable method to manipulate the generated image attributes such that these images can satisfy any arbitrary experimenter goals, tasks, or stimulus settings. We have tested the proposed method on various medical image modalities, including mammogram, MRI, CT, and skin cancer images. The generated authentic medical images verify the success of the proposed method. The model and generated images could be employed in any medical image perception research.