Samy El Bachaoui, Pieter-Jan Verhelst, Karla de Faria Vasconcelos, Eman Shaheen, Wim Coucke, Gwen Swennen, Reinhilde Jacobs, Constantinus Politis
{"title":"The impact of CBCT-head tilting on 3D condylar segmentation reproducibility.","authors":"Samy El Bachaoui, Pieter-Jan Verhelst, Karla de Faria Vasconcelos, Eman Shaheen, Wim Coucke, Gwen Swennen, Reinhilde Jacobs, Constantinus Politis","doi":"10.1259/dmfr.20230072","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate whether variations in head positioning may influence the reproducibility of cone-beam CT (CBCT) three-dimensional (3D) segmented models of the mandibular condyle.</p><p><strong>Methods: </strong>Five fresh frozen cadaver heads were scanned in four different positions: reference position (RP) and a set of three tilted alternative head positions (AP) in anteroposterior direction (AP1: 2 cm anterior translation, AP2: 5° pitch rotation, AP3: 10° pitch rotation). Surface models of mandibular condyles were constructed and compared with the condylar reference position using voxel-based registration. Descriptive statistics and a linear mixed-effects model were performed to compare condylar volumetric differences and root mean square (RMS) distance between surfaces of AP <i>vs</i> RP.</p><p><strong>Results: </strong>The mean differences in condylar volumes of AP <i>vs</i> RP were 14.1 mm³ (95% CI [-79.3, 107.4]) for AP1, 1.0 mm³ (95% CI [-87.2, 89.2]) for AP2 and 0.1 mm³ (95% CI [-88.3, 88.4]) for AP3. Mean and absolute volumetric differences did not exceed earlier reported intraoperator differences of 30 mm³. The RMS distance values obtained per group were 0.12 mm (95% CI [0.05,0.20]) for AP1, 0.17 mm (95% CI [0.10, 0.22]) for AP2 and 0.17 mm for AP3 (95% CI [0.10,0.22]). The confidence intervals (CI) for RMS distance remained far below the threshold for clinical acceptability (0.5 mm).</p><p><strong>Conclusions: </strong>Within the limits of the present study, it is suggested that tilted head positions may affect the reproducibility of 3D condylar segmentation, thereby influencing outcome in repeated CBCT scanning. Nevertheless, observed differences are unlikely to have a meaningful impact on clinical patient diagnosis and management.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1259/dmfr.20230072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate whether variations in head positioning may influence the reproducibility of cone-beam CT (CBCT) three-dimensional (3D) segmented models of the mandibular condyle.
Methods: Five fresh frozen cadaver heads were scanned in four different positions: reference position (RP) and a set of three tilted alternative head positions (AP) in anteroposterior direction (AP1: 2 cm anterior translation, AP2: 5° pitch rotation, AP3: 10° pitch rotation). Surface models of mandibular condyles were constructed and compared with the condylar reference position using voxel-based registration. Descriptive statistics and a linear mixed-effects model were performed to compare condylar volumetric differences and root mean square (RMS) distance between surfaces of AP vs RP.
Results: The mean differences in condylar volumes of AP vs RP were 14.1 mm³ (95% CI [-79.3, 107.4]) for AP1, 1.0 mm³ (95% CI [-87.2, 89.2]) for AP2 and 0.1 mm³ (95% CI [-88.3, 88.4]) for AP3. Mean and absolute volumetric differences did not exceed earlier reported intraoperator differences of 30 mm³. The RMS distance values obtained per group were 0.12 mm (95% CI [0.05,0.20]) for AP1, 0.17 mm (95% CI [0.10, 0.22]) for AP2 and 0.17 mm for AP3 (95% CI [0.10,0.22]). The confidence intervals (CI) for RMS distance remained far below the threshold for clinical acceptability (0.5 mm).
Conclusions: Within the limits of the present study, it is suggested that tilted head positions may affect the reproducibility of 3D condylar segmentation, thereby influencing outcome in repeated CBCT scanning. Nevertheless, observed differences are unlikely to have a meaningful impact on clinical patient diagnosis and management.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X