The Story of the Magee Equations: The Ultimate in Applied Immunohistochemistry.

IF 1.3 4区 医学 Q3 ANATOMY & MORPHOLOGY
Rohit Bhargava, David J Dabbs
{"title":"The Story of the Magee Equations: The Ultimate in Applied Immunohistochemistry.","authors":"Rohit Bhargava,&nbsp;David J Dabbs","doi":"10.1097/PAI.0000000000001065","DOIUrl":null,"url":null,"abstract":"<p><p>Magee equations (MEs) are a set of multivariable models that were developed to estimate the actual Onco type DX (ODX) recurrence score in invasive breast cancer. The equations were derived from standard histopathologic factors and semiquantitative immunohistochemical scores of routinely used biomarkers. The 3 equations use slightly different parameters but provide similar results. ME1 uses Nottingham score, tumor size, and semiquantitative results for estrogen receptor (ER), progesterone receptor, HER2, and Ki-67. ME2 is similar to ME1 but does not require Ki-67. ME3 includes only semiquantitative immunohistochemical expression levels for ER, progesterone receptor, HER2, and Ki-67. Several studies have validated the clinical usefulness of MEs in routine clinical practice. The new cut-off for ODX recurrence score, as reported in the Trial Assigning IndividuaLized Options for Treatment trial, necessitated the development of Magee Decision Algorithm (MDA). MEs, along with mitotic activity score can now be used algorithmically to safely forgo ODX testing. MDA can be used to triage cases for molecular testing and has the potential to save an estimated $300,000 per 100 clinical requests. Another potential use of MEs is in the neoadjuvant setting to appropriately select patients for chemotherapy. Both single and multi-institutional studies have shown that the rate of pathologic complete response (pCR) to neoadjuvant chemotherapy in ER+/HER2-negative patients can be predicted by ME3 scores. The estimated pCR rates are 0%, <5%, 14%, and 35 to 40% for ME3 score <18, 18 to 25, >25 to <31, and 31 or higher, respectively. This information is similar to or better than currently available molecular tests. MEs and MDA provide valuable information in a time-efficient manner and are available free of cost for anyone to use. The latter is certainly important for institutions in resource-poor settings but is also valuable for large institutions and integrated health systems.</p>","PeriodicalId":48952,"journal":{"name":"Applied Immunohistochemistry & Molecular Morphology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/f3/pai-31-490.PMC10396078.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Immunohistochemistry & Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAI.0000000000001065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Magee equations (MEs) are a set of multivariable models that were developed to estimate the actual Onco type DX (ODX) recurrence score in invasive breast cancer. The equations were derived from standard histopathologic factors and semiquantitative immunohistochemical scores of routinely used biomarkers. The 3 equations use slightly different parameters but provide similar results. ME1 uses Nottingham score, tumor size, and semiquantitative results for estrogen receptor (ER), progesterone receptor, HER2, and Ki-67. ME2 is similar to ME1 but does not require Ki-67. ME3 includes only semiquantitative immunohistochemical expression levels for ER, progesterone receptor, HER2, and Ki-67. Several studies have validated the clinical usefulness of MEs in routine clinical practice. The new cut-off for ODX recurrence score, as reported in the Trial Assigning IndividuaLized Options for Treatment trial, necessitated the development of Magee Decision Algorithm (MDA). MEs, along with mitotic activity score can now be used algorithmically to safely forgo ODX testing. MDA can be used to triage cases for molecular testing and has the potential to save an estimated $300,000 per 100 clinical requests. Another potential use of MEs is in the neoadjuvant setting to appropriately select patients for chemotherapy. Both single and multi-institutional studies have shown that the rate of pathologic complete response (pCR) to neoadjuvant chemotherapy in ER+/HER2-negative patients can be predicted by ME3 scores. The estimated pCR rates are 0%, <5%, 14%, and 35 to 40% for ME3 score <18, 18 to 25, >25 to <31, and 31 or higher, respectively. This information is similar to or better than currently available molecular tests. MEs and MDA provide valuable information in a time-efficient manner and are available free of cost for anyone to use. The latter is certainly important for institutions in resource-poor settings but is also valuable for large institutions and integrated health systems.

Abstract Image

Abstract Image

Abstract Image

Magee方程式的故事:应用免疫组织化学的终极。
Magee方程(MEs)是一组多变量模型,用于估计浸润性乳腺癌中Onco型DX (ODX)的实际复发评分。公式来源于标准组织病理因子和常规使用的生物标志物的半定量免疫组织化学评分。这3个方程使用的参数略有不同,但结果相似。ME1采用诺丁汉评分、肿瘤大小以及雌激素受体(ER)、孕激素受体、HER2和Ki-67的半定量结果。ME2与ME1相似,但不需要Ki-67。ME3仅包括ER、孕酮受体、HER2和Ki-67的半定量免疫组织化学表达水平。一些研究已经证实了MEs在常规临床实践中的临床应用。新的ODX复发评分截止值,如在试验分配个体化治疗方案试验中报道的那样,需要开发Magee决策算法(MDA)。MEs和有丝分裂活性评分现在可以用算法安全地放弃ODX测试。MDA可用于对病例进行分子检测的分类,每100个临床请求有可能节省约30万美元。MEs的另一个潜在用途是在新辅助环境中适当选择化疗患者。单机构和多机构研究均表明,ER+/ her2阴性患者新辅助化疗的病理完全缓解率(pCR)可通过ME3评分预测。估计pCR率为0%,25 ~
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Immunohistochemistry & Molecular Morphology
Applied Immunohistochemistry & Molecular Morphology ANATOMY & MORPHOLOGY-MEDICAL LABORATORY TECHNOLOGY
CiteScore
3.20
自引率
0.00%
发文量
153
期刊介绍: ​Applied Immunohistochemistry & Molecular Morphology covers newly developed identification and detection technologies, and their applications in research and diagnosis for the applied immunohistochemist & molecular Morphologist. Official Journal of the International Society for Immunohistochemisty and Molecular Morphology​.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信