Monitoring parameter change for bivariate time series models of counts.

Pub Date : 2023-05-07 DOI:10.1007/s42952-023-00212-9
Sangyeol Lee, Dongwon Kim
{"title":"Monitoring parameter change for bivariate time series models of counts.","authors":"Sangyeol Lee,&nbsp;Dongwon Kim","doi":"10.1007/s42952-023-00212-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we consider an online monitoring procedure to detect a parameter change for bivariate time series of counts, following bivariate integer-valued generalized autoregressive heteroscedastic (BIGARCH) and autoregressive (BINAR) models. To handle this problem, we employ the cumulative sum (CUSUM) process constructed from the (standardized) residuals obtained from those models. To attain control limits, we develop limit theorems for the proposed monitoring process. A simulation study and real data analysis are conducted to affirm the validity of the proposed method.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00212-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we consider an online monitoring procedure to detect a parameter change for bivariate time series of counts, following bivariate integer-valued generalized autoregressive heteroscedastic (BIGARCH) and autoregressive (BINAR) models. To handle this problem, we employ the cumulative sum (CUSUM) process constructed from the (standardized) residuals obtained from those models. To attain control limits, we develop limit theorems for the proposed monitoring process. A simulation study and real data analysis are conducted to affirm the validity of the proposed method.

Abstract Image

Abstract Image

Abstract Image

分享
查看原文
监测计数的双变量时间序列模型的参数变化。
在本研究中,我们考虑了一种在线监测程序,以检测计数的二变量时间序列的参数变化,遵循二变量整数值广义自回归异方差(BIGARCH)和自回归(BINAR)模型。为了处理这个问题,我们使用累积和(CUSUM)过程,该过程是由从这些模型中获得的(标准化)残差构建的。为了达到控制极限,我们为所提出的监测过程发展了极限定理。通过仿真研究和实际数据分析,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信