Enrichment of a Data Lake to Support Population Health Outcomes Studies Using Social Determinants Linked EHR Data.

Md Kamruz Zaman Rana, Xing Song, Humayera Islam, Tanmoy Paul, Khuder Alaboud, Lemuel R Waitman, Abu S M Mosa
{"title":"Enrichment of a Data Lake to Support Population Health Outcomes Studies Using Social Determinants Linked EHR Data.","authors":"Md Kamruz Zaman Rana,&nbsp;Xing Song,&nbsp;Humayera Islam,&nbsp;Tanmoy Paul,&nbsp;Khuder Alaboud,&nbsp;Lemuel R Waitman,&nbsp;Abu S M Mosa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of electronic health records (EHRs) with social determinants of health (SDoH) is crucial for population health outcome research, but it requires the collection of identifiable information and poses security risks. This study presents a framework for facilitating de-identified clinical data with privacy-preserved geocoded linked SDoH data in a Data Lake. A reidentification risk detection algorithm was also developed to evaluate the transmission risk of the data. The utility of this framework was demonstrated through one population health outcomes research analyzing the correlation between socioeconomic status and the risk of having chronic conditions. The results of this study inform the development of evidence-based interventions and support the use of this framework in understanding the complex relationships between SDoH and health outcomes. This framework reduces computational and administrative workload and security risks for researchers and preserves data privacy and enables rapid and reliable research on SDoH-connected clinical data for research institutes.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283101/pdf/2450.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of electronic health records (EHRs) with social determinants of health (SDoH) is crucial for population health outcome research, but it requires the collection of identifiable information and poses security risks. This study presents a framework for facilitating de-identified clinical data with privacy-preserved geocoded linked SDoH data in a Data Lake. A reidentification risk detection algorithm was also developed to evaluate the transmission risk of the data. The utility of this framework was demonstrated through one population health outcomes research analyzing the correlation between socioeconomic status and the risk of having chronic conditions. The results of this study inform the development of evidence-based interventions and support the use of this framework in understanding the complex relationships between SDoH and health outcomes. This framework reduces computational and administrative workload and security risks for researchers and preserves data privacy and enables rapid and reliable research on SDoH-connected clinical data for research institutes.

利用社会决定因素相关的电子病历数据丰富数据湖以支持人口健康结果研究。
电子健康记录(EHRs)与健康社会决定因素(SDoH)的整合对于人口健康结果研究至关重要,但它需要收集可识别的信息,并存在安全风险。本研究提出了一个框架,用于促进在数据湖中使用隐私保护的地理编码链接的SDoH数据去识别临床数据。提出了一种重新识别风险检测算法来评估数据的传输风险。通过一项人口健康结果研究,分析了社会经济地位与患慢性病风险之间的相关性,证明了这一框架的效用。这项研究的结果为基于证据的干预措施的发展提供了信息,并支持使用这一框架来理解SDoH与健康结果之间的复杂关系。该框架减少了研究人员的计算和管理工作量和安全风险,并保护了数据隐私,使研究机构能够快速可靠地研究与sdoh相关的临床数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信