{"title":"Mesenchymal Stem Cell-Derived Exosomal miRNA-222-3p Increases Th1/Th2 Ratio and Promotes Apoptosis of Acute Myeloid Leukemia Cells.","authors":"Yuan Yuan, Shengfen Tan, Huanhuan Wang, Junfeng Zhu, Jiajia Li, Pingping Zhang, Meng Wang, Feng Zhang","doi":"10.1155/2023/4024887","DOIUrl":null,"url":null,"abstract":"<p><p>Interferon regulatory factor 2 (IRF2) participates in the differentiation of immune T cells. Bone marrow mesenchymal stem cell (BM-MSC)-derived exosomes can secret mRNA, miRNAs, and proteins to regulate tumor microenvironment. The present study focused on the miRNA/IRF2 axis in regulating Th1/Th2 ratio and cell apoptosis in acute myeloid leukemia (AML). The flow cytometry analysis was performed to examine the Th1/Th2 ratio and AML apoptosis <i>in vivo</i> and <i>in vitro</i>. The contents of Interferon <i>γ</i> (IFN-<i>γ</i>) and Interleukin-4 (IL-4) were measured using enzyme-linked immunosorbent assay. StarBase was used to predict the potential binding site between miR-222-3p and the 3' untranslated region of IRF2. Luciferase reporter assay was applied for validating the combination of miR-222-3p and IRF2. BM-MSC exosomes were successfully isolated. BM-MSC exosomes increased Th1/Th2 ratio and promoted apoptosis of AML cells. Further analysis showed that IRF2 was targeted by miR-222-3p. Overexpression of miR-222-3p promoted Th1/Th2 ratio and AML cell apoptosis. IRF2 partially reversed the effect that is exerted by miR-222-3p on Th1/Th2 ratio and AML cell apoptosis. Overexpression of miR-222-3p promoted Th1/Th2 ratio and caspase 3 expression <i>in vivo</i>. To sum up, miR-222-3p promotes Th1/Th2 ratio and AML cell apoptosis by regulating IRF2 expression, which provided crucial targets for the treatment of AML.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"4024887"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447000/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/4024887","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Interferon regulatory factor 2 (IRF2) participates in the differentiation of immune T cells. Bone marrow mesenchymal stem cell (BM-MSC)-derived exosomes can secret mRNA, miRNAs, and proteins to regulate tumor microenvironment. The present study focused on the miRNA/IRF2 axis in regulating Th1/Th2 ratio and cell apoptosis in acute myeloid leukemia (AML). The flow cytometry analysis was performed to examine the Th1/Th2 ratio and AML apoptosis in vivo and in vitro. The contents of Interferon γ (IFN-γ) and Interleukin-4 (IL-4) were measured using enzyme-linked immunosorbent assay. StarBase was used to predict the potential binding site between miR-222-3p and the 3' untranslated region of IRF2. Luciferase reporter assay was applied for validating the combination of miR-222-3p and IRF2. BM-MSC exosomes were successfully isolated. BM-MSC exosomes increased Th1/Th2 ratio and promoted apoptosis of AML cells. Further analysis showed that IRF2 was targeted by miR-222-3p. Overexpression of miR-222-3p promoted Th1/Th2 ratio and AML cell apoptosis. IRF2 partially reversed the effect that is exerted by miR-222-3p on Th1/Th2 ratio and AML cell apoptosis. Overexpression of miR-222-3p promoted Th1/Th2 ratio and caspase 3 expression in vivo. To sum up, miR-222-3p promotes Th1/Th2 ratio and AML cell apoptosis by regulating IRF2 expression, which provided crucial targets for the treatment of AML.
期刊介绍:
Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.