ORPA: a fast and efficient phylogenetic analysis method for constructing genome-wide alignments of organelle genomes.

Guiqi Bi, Xinxin Luan, Jianbin Yan
{"title":"ORPA: a fast and efficient phylogenetic analysis method for constructing genome-wide alignments of organelle genomes.","authors":"Guiqi Bi, Xinxin Luan, Jianbin Yan","doi":"10.1016/j.jgg.2023.08.006","DOIUrl":null,"url":null,"abstract":"<p><p>Creating a multi-gene alignment matrix for phylogenetic analysis using organelle genomes involves aligning single-gene datasets manually, a process that can be time-consuming and prone to errors. The HomBlocks pipeline has been created to eliminate the inaccuracies arising from manual operations. The processing of a large number of sequences, however, remains a time-consuming task. To conquer this challenge, we develop a speedy and efficient method called Organelle Genomes for Phylogenetic Analysis (ORPA). ORPA can quickly generate multiple sequence alignments for whole-genome comparisons by parsing the result files of NCBI BLAST, completing the task just in 1 min. With increasing data volume, the efficiency of ORPA is even more pronounced, over 300 times faster than HomBlocks in aligning 60 high-plant chloroplast genomes. The phylogenetic tree outputs from ORPA are equivalent to HomBlocks, indicating its outstanding efficiency. Due to its speed and accuracy, ORPA can identify species-level evolutionary conflicts, providing valuable insights into evolutionary cognition.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"352-358"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of genetics and genomics = Yi chuan xue bao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jgg.2023.08.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Creating a multi-gene alignment matrix for phylogenetic analysis using organelle genomes involves aligning single-gene datasets manually, a process that can be time-consuming and prone to errors. The HomBlocks pipeline has been created to eliminate the inaccuracies arising from manual operations. The processing of a large number of sequences, however, remains a time-consuming task. To conquer this challenge, we develop a speedy and efficient method called Organelle Genomes for Phylogenetic Analysis (ORPA). ORPA can quickly generate multiple sequence alignments for whole-genome comparisons by parsing the result files of NCBI BLAST, completing the task just in 1 min. With increasing data volume, the efficiency of ORPA is even more pronounced, over 300 times faster than HomBlocks in aligning 60 high-plant chloroplast genomes. The phylogenetic tree outputs from ORPA are equivalent to HomBlocks, indicating its outstanding efficiency. Due to its speed and accuracy, ORPA can identify species-level evolutionary conflicts, providing valuable insights into evolutionary cognition.

ORPA:一种快速有效的系统发育分析方法,用于构建细胞器基因组的全基因组比对。
使用细胞器基因组创建用于系统发育分析的多基因比对矩阵涉及手动比对单基因数据集,这一过程可能耗时且容易出错。HomBlocks管道的创建是为了消除手动操作引起的不准确。然而,处理大量序列仍然是一项耗时的任务。为了克服这一挑战,我们开发了一种快速有效的方法,称为器官基因组系统发育分析(ORPA)。ORPA可以通过解析NCBI BLAST的结果文件,快速生成用于全基因组比较的多个序列比对,仅需1分钟即可完成任务。随着数据量的增加,ORPA的效率更加显著,在排列60个高植物叶绿体基因组方面比HomBlocks快300多倍。ORPA的系统发育树输出相当于HomBlocks,表明其卓越的效率。由于其速度和准确性,ORPA可以识别物种层面的进化冲突,为进化认知提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信