Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jaikanth Chandrasekaran, Yogeetha Sivakumaresan, Keerthika Shankar, Melphiya Dickson, Shruthi Laya Saravana Kumar, Lalitha Ramanathan, Iqrar Ahmad, Harun Patel
{"title":"Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing.","authors":"Jaikanth Chandrasekaran, Yogeetha Sivakumaresan, Keerthika Shankar, Melphiya Dickson, Shruthi Laya Saravana Kumar, Lalitha Ramanathan, Iqrar Ahmad, Harun Patel","doi":"10.1080/07391102.2023.2251070","DOIUrl":null,"url":null,"abstract":"<p><p>The protein kinase Wee1 plays a vital role in the G2/M cell cycle checkpoint activation, triggered by double-stranded DNA disruptions. It fulfills this task by phosphorylating and consequently deactivating the cyclin B linked to Cdk1/Cdc2 at the Tyr15 residue, leading to a G2 cell cycle halt and subsequent delay of mitosis post DNA damage. Despite advancements, only the Wee1 inhibitor MK1775 has made it to Phase II clinical trials, presenting a challenge in innovative chemical structure development for small molecule discovery. To navigate this challenge, we employed an e-pharmacophore model of the MK1775-WEE1 complex (PDB ID: 5V5Y), using in silico screening of FDA-approved drugs. We chose six drugs for analog creation, guided by docking scores, key residue interactions, and ligand occupancy. Utilizing the 'DrugSpaceX' database, we generated 2,776 analogues <i>via</i> expert-defined transformations. Our findings identified DE90612 as the top-ranked analogue, followed by DE363106, DE489678, DE395383, DE90548, DE689343, DE395019, and DE538066. These analogues introduced unique structures not found in other databases. A t-SNE structurally diversified distribution map unveiled promising transformations linked to Temozolomide for WEE1 inhibitor development. Simulations of the WEE1-DE90612 complex (a Temozolomide analogue) for 200 nanoseconds demonstrated stability, with DE90612 forging robust bonds with active site residues and sustaining vital contacts at ASN376 and CYS379. These results underscore DE90612's potential inhibitory properties at the WEE1 binding site, warranting additional <i>in vitro</i> and <i>in vivo</i> exploration for its anticancer activity. Our approach outlines a promising pathway for creating diverse WEE1 inhibitors with suitable biological properties for potential oncology therapeutics.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2251070","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The protein kinase Wee1 plays a vital role in the G2/M cell cycle checkpoint activation, triggered by double-stranded DNA disruptions. It fulfills this task by phosphorylating and consequently deactivating the cyclin B linked to Cdk1/Cdc2 at the Tyr15 residue, leading to a G2 cell cycle halt and subsequent delay of mitosis post DNA damage. Despite advancements, only the Wee1 inhibitor MK1775 has made it to Phase II clinical trials, presenting a challenge in innovative chemical structure development for small molecule discovery. To navigate this challenge, we employed an e-pharmacophore model of the MK1775-WEE1 complex (PDB ID: 5V5Y), using in silico screening of FDA-approved drugs. We chose six drugs for analog creation, guided by docking scores, key residue interactions, and ligand occupancy. Utilizing the 'DrugSpaceX' database, we generated 2,776 analogues via expert-defined transformations. Our findings identified DE90612 as the top-ranked analogue, followed by DE363106, DE489678, DE395383, DE90548, DE689343, DE395019, and DE538066. These analogues introduced unique structures not found in other databases. A t-SNE structurally diversified distribution map unveiled promising transformations linked to Temozolomide for WEE1 inhibitor development. Simulations of the WEE1-DE90612 complex (a Temozolomide analogue) for 200 nanoseconds demonstrated stability, with DE90612 forging robust bonds with active site residues and sustaining vital contacts at ASN376 and CYS379. These results underscore DE90612's potential inhibitory properties at the WEE1 binding site, warranting additional in vitro and in vivo exploration for its anticancer activity. Our approach outlines a promising pathway for creating diverse WEE1 inhibitors with suitable biological properties for potential oncology therapeutics.Communicated by Ramaswamy H. Sarma.

扩大WEE1抑制剂的范围:通过计算方法和药物再利用识别新的候选药物。
蛋白激酶 Wee1 在双链 DNA 干扰引发的 G2/M 细胞周期检查点激活过程中发挥着重要作用。它通过使与 Cdk1/Cdc2 相连的细胞周期蛋白 B 在 Tyr15 残基上发生磷酸化,从而使其失活,导致 G2 细胞周期停止,并在 DNA 损伤后推迟有丝分裂。尽管取得了进展,但只有 Wee1 抑制剂 MK1775 进入了二期临床试验阶段,这给小分子化合物的创新化学结构开发带来了挑战。为了应对这一挑战,我们采用了 MK1775-WEE1 复合物的电子药代动力学模型(PDB ID:5V5Y),并对 FDA 批准的药物进行了硅学筛选。我们根据对接得分、关键残基相互作用和配体占有率选择了六种药物来创建类似物。利用 "DrugSpaceX "数据库,我们通过专家定义的转换生成了 2,776 种类似物。我们的研究结果表明,DE90612 是排名第一的类似物,其次是 DE363106、DE489678、DE395383、DE90548、DE689343、DE395019 和 DE538066。这些类似物具有其他数据库中没有的独特结构。t-SNE 结构多样化分布图揭示了与替莫唑胺有关的有望开发 WEE1 抑制剂的转化物。对WEE1-DE90612复合物(替莫唑胺类似物)200纳秒的模拟显示了其稳定性,DE90612与活性位点残基形成了牢固的结合,并维持了ASN376和CYS379的重要接触。这些结果凸显了 DE90612 在 WEE1 结合位点的潜在抑制特性,值得对其抗癌活性进行更多的体外和体内探索。我们的研究方法为创造具有合适生物学特性的多样化 WEE1 抑制剂提供了一条前景广阔的途径,可用于潜在的肿瘤治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信