A Fechner multiscale local descriptor for face recognition.

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jinxiang Feng, Jie Xu, Yizhi Deng, Jun Gao
{"title":"A Fechner multiscale local descriptor for face recognition.","authors":"Jinxiang Feng,&nbsp;Jie Xu,&nbsp;Yizhi Deng,&nbsp;Jun Gao","doi":"10.1007/s11227-023-05421-x","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by Fechner's law, we propose a Fechner multiscale local descriptor (FMLD) for feature extraction and face recognition. Fechner's law is a well-known law in psychology, which states that a human perception is proportional to the logarithm of the intensity of the corresponding significant differences physical quantity. FMLD uses the significant difference between pixels to simulate the pattern perception of human beings to the changes of surroundings. The first round of feature extraction is performed in two local domains of different sizes to capture the structural features of the facial images, resulting in four facial feature images. In the second round of feature extraction, two binary patterns are used to extract local features on the obtained magnitude and direction feature images, and four corresponding feature maps are output. Finally, all feature maps are fused to form an overall histogram feature. Different from the existing descriptors, the FMLD's magnitude and direction features are not isolated. They are derived from the \"perceived intensity\", thus there is a close relationship between them, which further facilitates the feature representation. In the experiments, we evaluated the performance of FMLD in multiple face databases and compared it with the leading edge approaches. The results show that the proposed FMLD performs well in recognizing images with illumination, pose, expression and occlusion changes. The results also indicate that the feature images produced by FMLD significantly improve the performance of convolutional neural network (CNN), and the combination of FMLD and CNN exhibits better performance than other advanced descriptors.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-28"},"PeriodicalIF":2.5000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05421-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by Fechner's law, we propose a Fechner multiscale local descriptor (FMLD) for feature extraction and face recognition. Fechner's law is a well-known law in psychology, which states that a human perception is proportional to the logarithm of the intensity of the corresponding significant differences physical quantity. FMLD uses the significant difference between pixels to simulate the pattern perception of human beings to the changes of surroundings. The first round of feature extraction is performed in two local domains of different sizes to capture the structural features of the facial images, resulting in four facial feature images. In the second round of feature extraction, two binary patterns are used to extract local features on the obtained magnitude and direction feature images, and four corresponding feature maps are output. Finally, all feature maps are fused to form an overall histogram feature. Different from the existing descriptors, the FMLD's magnitude and direction features are not isolated. They are derived from the "perceived intensity", thus there is a close relationship between them, which further facilitates the feature representation. In the experiments, we evaluated the performance of FMLD in multiple face databases and compared it with the leading edge approaches. The results show that the proposed FMLD performs well in recognizing images with illumination, pose, expression and occlusion changes. The results also indicate that the feature images produced by FMLD significantly improve the performance of convolutional neural network (CNN), and the combination of FMLD and CNN exhibits better performance than other advanced descriptors.

Abstract Image

Abstract Image

Abstract Image

用于人脸识别的Fechner多尺度局部描述符。
受Fechner定律的启发,我们提出了一种用于特征提取和人脸识别的Fechner多尺度局部描述符(FMLD)。费什内尔定律是心理学中一个著名的定律,它指出人类的感知与相应显著差异的物理量的强度的对数成正比。FMLD利用像素之间的显著差异来模拟人类对周围环境变化的模式感知。第一轮特征提取是在两个不同大小的局部域中进行的,以捕捉面部图像的结构特征,得到四个面部特征图像。在第二轮特征提取中,使用两个二进制模式来提取所获得的幅度和方向特征图像上的局部特征,并输出四个相应的特征图。最后,将所有特征图进行融合,形成整体直方图特征。与现有的描述符不同,FMLD的幅度和方向特征不是孤立的。它们来源于“感知强度”,因此它们之间有着密切的关系,这进一步促进了特征的表示。在实验中,我们评估了FMLD在多个人脸数据库中的性能,并将其与前沿方法进行了比较。结果表明,所提出的FMLD在识别具有光照、姿态、表情和遮挡变化的图像方面表现良好。结果还表明,FMLD生成的特征图像显著提高了卷积神经网络(CNN)的性能,并且FMLD和CNN的组合比其他高级描述符表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信