{"title":"Genome-wide analysis of glutamate receptor gene family in allopolyploid Brassica napus and its diploid progenitors.","authors":"Bidhan Chandra Roy, Nikita Shukla, Ratan Gachhui, Ashutosh Mukherjee","doi":"10.1007/s10709-023-00192-y","DOIUrl":null,"url":null,"abstract":"<p><p>Ionotropic glutamate receptors are ligand-gated nonselective cation channels that mediate neurotransmission in the central nervous system of animals. Plants possess homologous proteins called glutamate receptor-like channels (GLRs) which are involved in vital physiological processes including seed germination, long-distance signaling, chemotaxis, Ca<sup>2+</sup> signaling etc. Till now, a comprehensive genome-wide analysis of the GLR gene family members in different economically important species of Brassica is missing. Considering the origin of allotetraploid Brassica napus from the hybridization between the diploid Brassica oleracea and Brassica rapa, we have identified 11, 27 and 65 GLR genes in B. oleracea, B. rapa and B. napus, respectively showing an expansion of this gene family in B. napus. Chromosomal locations revealed several tandemly duplicated GLR genes in all the three species. Moreover, the gene family expanded in B. napus after allopolyploidization. The phylogenetic analysis showed that the 103 GLRs are classified into three main groups. The exon-intron structures of these genes are not very conserved and showed wide variation in intron numbers. However, protein sequences are much conserved as shown by the presence of ten short amino acid sequence motifs. Predicted cis-acting elements in 1 kb promoters of GLR genes are mainly involved in light, stress and hormone responses. RNA-seq analysis showed that in B. oleracea and B. rapa, some GLRs are more tissue specific than others. In B. napus, some GLRs are downregulated under cold stress, while others are upregulated. In summary, this bioinformatic study of the GLR gene family of the three Brassica species provides evidence for the expansion of this gene family in B. napus and also provided useful information for in-depth studies of their biological functions in Brassica.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-023-00192-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ionotropic glutamate receptors are ligand-gated nonselective cation channels that mediate neurotransmission in the central nervous system of animals. Plants possess homologous proteins called glutamate receptor-like channels (GLRs) which are involved in vital physiological processes including seed germination, long-distance signaling, chemotaxis, Ca2+ signaling etc. Till now, a comprehensive genome-wide analysis of the GLR gene family members in different economically important species of Brassica is missing. Considering the origin of allotetraploid Brassica napus from the hybridization between the diploid Brassica oleracea and Brassica rapa, we have identified 11, 27 and 65 GLR genes in B. oleracea, B. rapa and B. napus, respectively showing an expansion of this gene family in B. napus. Chromosomal locations revealed several tandemly duplicated GLR genes in all the three species. Moreover, the gene family expanded in B. napus after allopolyploidization. The phylogenetic analysis showed that the 103 GLRs are classified into three main groups. The exon-intron structures of these genes are not very conserved and showed wide variation in intron numbers. However, protein sequences are much conserved as shown by the presence of ten short amino acid sequence motifs. Predicted cis-acting elements in 1 kb promoters of GLR genes are mainly involved in light, stress and hormone responses. RNA-seq analysis showed that in B. oleracea and B. rapa, some GLRs are more tissue specific than others. In B. napus, some GLRs are downregulated under cold stress, while others are upregulated. In summary, this bioinformatic study of the GLR gene family of the three Brassica species provides evidence for the expansion of this gene family in B. napus and also provided useful information for in-depth studies of their biological functions in Brassica.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.