Chemoprevention curcumin analog 1.1 promotes metaphase arrest and enhances intracellular reactive oxygen species levels on TNBC MDA-MB-231 and HER2-positive HCC1954 cells.
{"title":"Chemoprevention curcumin analog 1.1 promotes metaphase arrest and enhances intracellular reactive oxygen species levels on TNBC MDA-MB-231 and HER2-positive HCC1954 cells.","authors":"Dhania Novitasari, Riris Istighfari Jenie, Jun-Ya Kato, Edy Meiyanto","doi":"10.4103/1735-5362.378083","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Previous studies highlighted that chemoprevention curcumin analog-1.1 (CCA-1.1) demonstrated an antitumor effect on breast, leukemia, and colorectal cancer cells. By utilizing immortalized MDA-MB-231 and HCC1954 cells, we evaluated the anticancer properties of CCA-1.1 and its mediated activity to promote cellular death.</p><p><strong>Experimental approach: </strong>Cytotoxicity and anti-proliferation were assayed using trypan blue exclusion. The cell cycle profile after CCA-1.1 treatment was established through flow cytometry. May-Grünwald-Giemsa and Hoechst staining were performed to determine the cell cycle arrest upon CCA-1.1 treatment. The involvement of CCA-1.1 in mitotic kinases (aurora A, p-aurora A, p-PLK1, and p-cyclin B1) expression was investigated by immunoblotting. CCA-1.1-treated cells were stained with the X-gal solution to examine the effect on senescence. ROS level and mitochondrial respiration were assessed by DCFDA assay and mitochondrial oxygen consumption rate, respectively.</p><p><strong>Findings/results: </strong>CCA-1.1 exerted cytotoxic activity and inhibited cell proliferation with an irreversible effect, and the flow cytometry analysis demonstrated that CCA-1.1 significantly halted during the G2/M phase, and further assessment revealed that CCA-1.1 caused metaphase arrest. Immunoblot assays confirmed CCA-1.1 suppressed aurora A kinase in MDA-MB-231 cells. The ROS level was elevated after treatment with CCA-1.1, which might promote cellular senescence and suppress basal mitochondrial respiration in MDA-MB-231 cells.</p><p><strong>Conclusion and implications: </strong>Our data suggested the <i>in vitro</i> proof-of-concept that supports the involvement in cell cycle regulation and ROS generation as contributors to the effectiveness of CCA-1.1 in suppressing breast cancer cell growth.</p>","PeriodicalId":21075,"journal":{"name":"Research in Pharmaceutical Sciences","volume":"18 4","pages":"358-370"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/9d/RPS-18-358.PMC10443663.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/1735-5362.378083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 3
Abstract
Background and purpose: Previous studies highlighted that chemoprevention curcumin analog-1.1 (CCA-1.1) demonstrated an antitumor effect on breast, leukemia, and colorectal cancer cells. By utilizing immortalized MDA-MB-231 and HCC1954 cells, we evaluated the anticancer properties of CCA-1.1 and its mediated activity to promote cellular death.
Experimental approach: Cytotoxicity and anti-proliferation were assayed using trypan blue exclusion. The cell cycle profile after CCA-1.1 treatment was established through flow cytometry. May-Grünwald-Giemsa and Hoechst staining were performed to determine the cell cycle arrest upon CCA-1.1 treatment. The involvement of CCA-1.1 in mitotic kinases (aurora A, p-aurora A, p-PLK1, and p-cyclin B1) expression was investigated by immunoblotting. CCA-1.1-treated cells were stained with the X-gal solution to examine the effect on senescence. ROS level and mitochondrial respiration were assessed by DCFDA assay and mitochondrial oxygen consumption rate, respectively.
Findings/results: CCA-1.1 exerted cytotoxic activity and inhibited cell proliferation with an irreversible effect, and the flow cytometry analysis demonstrated that CCA-1.1 significantly halted during the G2/M phase, and further assessment revealed that CCA-1.1 caused metaphase arrest. Immunoblot assays confirmed CCA-1.1 suppressed aurora A kinase in MDA-MB-231 cells. The ROS level was elevated after treatment with CCA-1.1, which might promote cellular senescence and suppress basal mitochondrial respiration in MDA-MB-231 cells.
Conclusion and implications: Our data suggested the in vitro proof-of-concept that supports the involvement in cell cycle regulation and ROS generation as contributors to the effectiveness of CCA-1.1 in suppressing breast cancer cell growth.
期刊介绍:
Research in Pharmaceutical Sciences (RPS) is included in Thomson Reuters ESCI Web of Science (searchable at WoS master journal list), indexed with PubMed and PubMed Central and abstracted in the Elsevier Bibliographic Databases. Databases include Scopus, EMBASE, EMCare, EMBiology and Elsevier BIOBASE. It is also indexed in several specialized databases including Scientific Information Database (SID), Google Scholar, Iran Medex, Magiran, Index Copernicus (IC) and Islamic World Science Citation Center (ISC).