Sex steroids have opposing effects on heart rate of juveniles, Gambusia holbrooki.

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Journal of molecular endocrinology Pub Date : 2023-06-26 Print Date: 2023-08-01 DOI:10.1530/JME-23-0021
Seyed Ehsan Mousavi, Komeil Razmi, Jawahar G Patil
{"title":"Sex steroids have opposing effects on heart rate of juveniles, Gambusia holbrooki.","authors":"Seyed Ehsan Mousavi,&nbsp;Komeil Razmi,&nbsp;Jawahar G Patil","doi":"10.1530/JME-23-0021","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Built on our recent work that heart rates (HRs) and function in Gambusia holbrooki are sexually dimorphic, this study assessed whether the species is an appropriate model to study sex-hormone effects on heart physiology. With a hypothesis that 17β-estradiol (E2) and 17α-methyltestosterone (MT) regulate the HR of juvenile G. holbrooki in a sex-specific manner, genetic males and females were treated with E2 and MT, respectively, and the HR; (bpm) was measured an hour following treatment using light-cardiogram. Results showed the HRs (bpm) of both sexes were significantly (P < 0.05) altered compared to controls. Specifically, the E2 accelerated HR in the males and conversely MT decelerated the HR in the females. The normal expression levels of estrogen (erα and erβ) and G protein-coupled estrogen (gper) receptor genes were significantly higher (P < 0.05) in female than male hearts. Interestingly, the activity of the erβ in the heart of the MT-treated females reversed and was significantly lower (P < 0.05) than those of males while erα and gper were non-responsive. In contrast, significant down- and up-regulation of erα and gper, respectively, occurred in the liver of MT-treated females. Morphological observations suggest that MT caused hepatomegaly, somewhat resembling an inflating balloon, perhaps induced by the accumulation of unexpelled gases. E2-induced ventricular angiogenesis in males was likely due to an influx of blood supply caused by the increased HRs. Collectively, the results demonstrate that the juvenile G. holbrooki heart readily responds to E2/MT in a sex-specific manner.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"71 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-23-0021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Built on our recent work that heart rates (HRs) and function in Gambusia holbrooki are sexually dimorphic, this study assessed whether the species is an appropriate model to study sex-hormone effects on heart physiology. With a hypothesis that 17β-estradiol (E2) and 17α-methyltestosterone (MT) regulate the HR of juvenile G. holbrooki in a sex-specific manner, genetic males and females were treated with E2 and MT, respectively, and the HR; (bpm) was measured an hour following treatment using light-cardiogram. Results showed the HRs (bpm) of both sexes were significantly (P < 0.05) altered compared to controls. Specifically, the E2 accelerated HR in the males and conversely MT decelerated the HR in the females. The normal expression levels of estrogen (erα and erβ) and G protein-coupled estrogen (gper) receptor genes were significantly higher (P < 0.05) in female than male hearts. Interestingly, the activity of the erβ in the heart of the MT-treated females reversed and was significantly lower (P < 0.05) than those of males while erα and gper were non-responsive. In contrast, significant down- and up-regulation of erα and gper, respectively, occurred in the liver of MT-treated females. Morphological observations suggest that MT caused hepatomegaly, somewhat resembling an inflating balloon, perhaps induced by the accumulation of unexpelled gases. E2-induced ventricular angiogenesis in males was likely due to an influx of blood supply caused by the increased HRs. Collectively, the results demonstrate that the juvenile G. holbrooki heart readily responds to E2/MT in a sex-specific manner.

性类固醇对幼体的心率有相反的作用。
摘要:基于我们最近的研究,即冈比亚的心率和功能是两性二型的,本研究评估了该物种是否是研究性激素对心脏生理影响的合适模型。假设17β-雌二醇(E2)和17α-甲基睾酮(MT)以性别特异性的方式调节霍尔布鲁克幼鱼的HR,遗传雄性和雌性分别用E2和MT处理,HR;(bpm)在治疗后一小时使用轻型心电图进行测量。结果显示,与对照组相比,两性的心率(bpm)均有显著变化(P<0.05)。具体而言,E2加速了雄性的HR,相反,MT减慢了雌性的HR。雌激素(erα和erβ)和G蛋白偶联雌激素(gper)受体基因在女性心脏中的正常表达水平显著高于男性(P<0.05)。有趣的是,MT治疗的雌性心脏中erβ的活性逆转,显著低于雄性(P<0.05),而erα和gper没有反应。相反,在MT治疗的女性肝脏中,erα和gper分别出现显著下调和上调。形态学观察表明MT引起肝肿大,有点像膨胀的气球,可能是由未膨胀气体的积聚引起的。E2诱导的雄性心室血管生成可能是由于HR增加引起的血液供应流入。总之,研究结果表明,幼年G.holbrooki心脏很容易以性别特异性的方式对E2/MT做出反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信