JOINT MOTION CORRECTION AND 3D SEGMENTATION WITH GRAPH-ASSISTED NEURAL NETWORKS FOR RETINAL OCT.

Yiqian Wang, Carlo Galang, William R Freeman, Truong Q Nguyen, Cheolhong An
{"title":"JOINT MOTION CORRECTION AND 3D SEGMENTATION WITH GRAPH-ASSISTED NEURAL NETWORKS FOR RETINAL OCT.","authors":"Yiqian Wang,&nbsp;Carlo Galang,&nbsp;William R Freeman,&nbsp;Truong Q Nguyen,&nbsp;Cheolhong An","doi":"10.1109/icip46576.2022.9898072","DOIUrl":null,"url":null,"abstract":"<p><p>Optical Coherence Tomography (OCT) is a widely used non-invasive high resolution 3D imaging technique for biological tissues and plays an important role in ophthalmology. OCT retinal layer segmentation is a fundamental image processing step for OCT-Angiography projection, and disease analysis. A major problem in retinal imaging is the motion artifacts introduced by involuntary eye movements. In this paper, we propose neural networks that jointly correct eye motion and retinal layer segmentation utilizing 3D OCT information, so that the segmentation among neighboring B-scans would be consistent. The experimental results show both visual and quantitative improvements by combining motion correction and 3D OCT layer segmentation comparing to conventional and deep-learning based 2D OCT layer segmentation.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2022 ","pages":"766-770"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280808/pdf/nihms-1908719.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip46576.2022.9898072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optical Coherence Tomography (OCT) is a widely used non-invasive high resolution 3D imaging technique for biological tissues and plays an important role in ophthalmology. OCT retinal layer segmentation is a fundamental image processing step for OCT-Angiography projection, and disease analysis. A major problem in retinal imaging is the motion artifacts introduced by involuntary eye movements. In this paper, we propose neural networks that jointly correct eye motion and retinal layer segmentation utilizing 3D OCT information, so that the segmentation among neighboring B-scans would be consistent. The experimental results show both visual and quantitative improvements by combining motion correction and 3D OCT layer segmentation comparing to conventional and deep-learning based 2D OCT layer segmentation.

基于图辅助神经网络的视网膜Oct关节运动校正与三维分割。
光学相干断层扫描(Optical Coherence Tomography, OCT)是一种广泛应用的无创高分辨率生物组织三维成像技术,在眼科中发挥着重要作用。OCT视网膜层分割是OCT血管造影投影和疾病分析的基本图像处理步骤。视网膜成像的一个主要问题是由不自主的眼球运动引起的运动伪影。在本文中,我们提出了利用三维OCT信息联合校正眼动和视网膜层分割的神经网络,从而使相邻b扫描之间的分割一致。实验结果表明,与传统和基于深度学习的2D OCT层分割相比,结合运动校正和3D OCT层分割在视觉和定量上都有改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信