Maria Siemionow, Joanna Cwykiel, Lucile Chambily, Stephanie Gacek, Sonia Brodowska
{"title":"Novel Human Umbilical Di-Chimeric (HUDC) cell therapy for transplantation without life-long immunosuppression.","authors":"Maria Siemionow, Joanna Cwykiel, Lucile Chambily, Stephanie Gacek, Sonia Brodowska","doi":"10.21037/sci-2023-024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cell-based therapies are promising for tolerance induction in bone marrow (BM), solid organs, and vascularized composite allotransplantation (VCA). The toxicity of bone marrow transplantation (BMT) protocols precludes this approach from routine clinical applications. To address this problem, we developed a new therapy of Human Umbilical Di-Chimeric (HUDC) cells for tolerance induction in transplantation. This study established <i>in vitro</i> characterization of the created HUDC cells.</p><p><strong>Methods: </strong>We performed sixteen <i>ex vivo</i> polyethylene glycol (PEG)-mediated fusions of human umbilical cord blood (UCB) cells from two unrelated donors. Fusion feasibility was confirmed <i>in vitro</i> by flow cytometry (FC) and confocal microscopy (CM). The HUDC cells' genotype was assessed by lymphocytotoxicity test and short tandem repeat-polymerase chain reaction (STR-PCR) analysis, phenotype by FC, viability by LIVE/DEAD<sup>®</sup> assay, and apoptosis level by Annexin V staining. We used COMET assay to assess HUDC cells' genotoxicity after the fusion procedure. Clonogenic properties of HUDC cells were evaluated by colony forming unit (CFU) assay. Mixed lymphocyte reaction (MLR) assay assessed immunogenic and tolerogenic properties of HUDC cells.</p><p><strong>Results: </strong>We confirmed the creation of HUDC cells from two unrelated human donors of UCB cells by FC and CM. Human leukocyte antigen (HLA) class I and II typing, and STR-PCR analysis of HUDC cells confirmed the presence of alleles and loci from both unrelated UCB donors (donor chimerism: 49%±8.3%, n=4). FC confirmed the hematopoietic phenotype of HUDC cells. We confirmed high HUDC cells' viability (0.47% of dead cells) and a low apoptosis level of fused HUDC cells (15.9%) compared to positive control of PKH-stained UCB cells (20.4%) before fusion. COMET assay of HUDC cells revealed a lack of DNA damage. CFU assay confirmed clonogenic properties of HUDC cells, and MLR assay revealed a low immunogenicity of HUDC cells.</p><p><strong>Conclusions: </strong>This study confirmed creation of a novel HUDC cell line by <i>ex vivo</i> PEG-mediated fusion of UCB cells from two unrelated donors. The unique concept of creating a HUDC cell line, representing the genotype and phenotype of both, transplant donor and the recipient, introduces a promising approach for tolerance induction in BM, solid organs, and VCA transplantation.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/29/c5/sci-10-2023-024.PMC10442563.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/sci-2023-024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Cell-based therapies are promising for tolerance induction in bone marrow (BM), solid organs, and vascularized composite allotransplantation (VCA). The toxicity of bone marrow transplantation (BMT) protocols precludes this approach from routine clinical applications. To address this problem, we developed a new therapy of Human Umbilical Di-Chimeric (HUDC) cells for tolerance induction in transplantation. This study established in vitro characterization of the created HUDC cells.
Methods: We performed sixteen ex vivo polyethylene glycol (PEG)-mediated fusions of human umbilical cord blood (UCB) cells from two unrelated donors. Fusion feasibility was confirmed in vitro by flow cytometry (FC) and confocal microscopy (CM). The HUDC cells' genotype was assessed by lymphocytotoxicity test and short tandem repeat-polymerase chain reaction (STR-PCR) analysis, phenotype by FC, viability by LIVE/DEAD® assay, and apoptosis level by Annexin V staining. We used COMET assay to assess HUDC cells' genotoxicity after the fusion procedure. Clonogenic properties of HUDC cells were evaluated by colony forming unit (CFU) assay. Mixed lymphocyte reaction (MLR) assay assessed immunogenic and tolerogenic properties of HUDC cells.
Results: We confirmed the creation of HUDC cells from two unrelated human donors of UCB cells by FC and CM. Human leukocyte antigen (HLA) class I and II typing, and STR-PCR analysis of HUDC cells confirmed the presence of alleles and loci from both unrelated UCB donors (donor chimerism: 49%±8.3%, n=4). FC confirmed the hematopoietic phenotype of HUDC cells. We confirmed high HUDC cells' viability (0.47% of dead cells) and a low apoptosis level of fused HUDC cells (15.9%) compared to positive control of PKH-stained UCB cells (20.4%) before fusion. COMET assay of HUDC cells revealed a lack of DNA damage. CFU assay confirmed clonogenic properties of HUDC cells, and MLR assay revealed a low immunogenicity of HUDC cells.
Conclusions: This study confirmed creation of a novel HUDC cell line by ex vivo PEG-mediated fusion of UCB cells from two unrelated donors. The unique concept of creating a HUDC cell line, representing the genotype and phenotype of both, transplant donor and the recipient, introduces a promising approach for tolerance induction in BM, solid organs, and VCA transplantation.
期刊介绍:
The Stem Cell Investigation (SCI; Stem Cell Investig; Online ISSN: 2313-0792) is a free access, peer-reviewed online journal covering basic, translational, and clinical research on all aspects of stem cells. It publishes original research articles and reviews on embryonic stem cells, induced pluripotent stem cells, adult tissue-specific stem/progenitor cells, cancer stem like cells, stem cell niche, stem cell technology, stem cell based drug discovery, and regenerative medicine. Stem Cell Investigation is indexed in PubMed/PMC since April, 2016.