{"title":"Hyplane: a single-stage suborbital aerospaceplane.","authors":"Gennaro Russo, Claudio Voto","doi":"10.1007/s12567-023-00494-z","DOIUrl":null,"url":null,"abstract":"<p><p>This paper has the aim to report the status of the HYPLANE project to date. HYPLANE is a horizontal take-off and landing <i>Mach 4.5</i> bizjet-size aerospaceplane conceived by Trans-Tech and University Federico II of Naples and under study within the industrial-academic ecosystem of the Campania Aerospace District (DAC). HYPLANE has the aim to offer very fast suborbital flight for space tourism, microgravity experimentation and training, and also shortening time to connect two distant airports within a door-to-door scenario. The concept is based on the access to stratospheric altitudes (<i>30 km</i>) for either point-to-point stratospheric or suborbital flights as safe as today's commercial air transportation, by integrating enhanced state-of-the-art aeronautical and space technologies. Essentially, HYPLANE is mostly based on already relatively high TRL technologies which guarantees a sufficiently short time to market. The low wing loading configuration and designed ability to manoeuvre along the flight trajectories at small angles of attack, allow HYPLANE to guarantee accelerations and load factors of the same order as those characterizing the present civil aviation aircraft (FAA/EASA specifications). Thanks to its technical features, it may operate from/to more than 5000 airports all over the world needing short runways to take-off and land, which for point-to-point business aviation is paramount. Furthermore, characteristics such as small dimension, configuration and high cruising altitude determine reduced noise in the airports surrounding and low sonic boom impact on ground. These conditions will further facilitate not only the development of the commercial use of such kind of transportation mean, but also its social acceptability.</p>","PeriodicalId":44940,"journal":{"name":"CEAS Space Journal","volume":" ","pages":"1-15"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105361/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEAS Space Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12567-023-00494-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
This paper has the aim to report the status of the HYPLANE project to date. HYPLANE is a horizontal take-off and landing Mach 4.5 bizjet-size aerospaceplane conceived by Trans-Tech and University Federico II of Naples and under study within the industrial-academic ecosystem of the Campania Aerospace District (DAC). HYPLANE has the aim to offer very fast suborbital flight for space tourism, microgravity experimentation and training, and also shortening time to connect two distant airports within a door-to-door scenario. The concept is based on the access to stratospheric altitudes (30 km) for either point-to-point stratospheric or suborbital flights as safe as today's commercial air transportation, by integrating enhanced state-of-the-art aeronautical and space technologies. Essentially, HYPLANE is mostly based on already relatively high TRL technologies which guarantees a sufficiently short time to market. The low wing loading configuration and designed ability to manoeuvre along the flight trajectories at small angles of attack, allow HYPLANE to guarantee accelerations and load factors of the same order as those characterizing the present civil aviation aircraft (FAA/EASA specifications). Thanks to its technical features, it may operate from/to more than 5000 airports all over the world needing short runways to take-off and land, which for point-to-point business aviation is paramount. Furthermore, characteristics such as small dimension, configuration and high cruising altitude determine reduced noise in the airports surrounding and low sonic boom impact on ground. These conditions will further facilitate not only the development of the commercial use of such kind of transportation mean, but also its social acceptability.
期刊介绍:
The CEAS Space Journal has been created by the CEAS Space Branch to provide an appropriate platform for the excellent scientific publications submitted by scientists and engineers. Under the umbrella of CEAS, the German Aerospace Center (DLR) and the European Space Agency (ESA) support the Journal. The Journal is devoted to new developments and results in all areas of space-related science and technology, including important spin-off capabilities and applications as well as ground-based support systems and manufacturing advancements. Of interest are also (invited) in-depth reviews of the status of development in specific areas of relevance to space, and descriptions of the potential way forward. Typical disciplines of interest include mission design and space systems, satellite communications, aerothermodynamics (including physical fluid dynamics), environmental control and life support systems, materials, operations, space debris, optics, optoelectronics and photonics, guidance, navigation and control, mechanisms, propulsion, power, robotics, structures, testing and thermal issues and small satellites. The Journal publishes peer-reviewed original articles, (invited) reviews and short communications.