Multiple Imputation of Missing Complex Survey Data using SAS®: A Brief Overview and An Example Based on the Research and Development Survey (RANDS).

Survey statistician Pub Date : 2023-01-01
Yulei He, Guangyu Zhang
{"title":"Multiple Imputation of Missing Complex Survey Data using SAS<sup>®</sup>: A Brief Overview and An Example Based on the Research and Development Survey (RANDS).","authors":"Yulei He,&nbsp;Guangyu Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple imputation (MI) is a widely used analytic approach to address missing data problems. SAS<sup>®</sup> (SAS Institute Inc, Cary, N.C.) has established MI procedures including PROC MI and PROC MIANALYZE. We illustrate the use of these procedures for conducting MI analysis of complex survey data by an example from RANDS. Section 1 contains the introduction. Section 2 includes some necessary methodological background. Section 3 shows a MI example with an arbitrary missing data pattern. Section 4 concludes the paper with a discussion.</p>","PeriodicalId":74894,"journal":{"name":"Survey statistician","volume":"87 ","pages":"37-47"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey statistician","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple imputation (MI) is a widely used analytic approach to address missing data problems. SAS® (SAS Institute Inc, Cary, N.C.) has established MI procedures including PROC MI and PROC MIANALYZE. We illustrate the use of these procedures for conducting MI analysis of complex survey data by an example from RANDS. Section 1 contains the introduction. Section 2 includes some necessary methodological background. Section 3 shows a MI example with an arbitrary missing data pattern. Section 4 concludes the paper with a discussion.

利用SAS®进行复杂调查数据缺失的多重补全:综述与以研发调查(rand)为例
多重插值(Multiple imputation, MI)是一种广泛应用于解决数据缺失问题的分析方法。SAS®(SAS Institute Inc, Cary, N.C.)已经建立了MI程序,包括PROC MI和PROC MIANALYZE。我们通过rand的一个例子来说明这些程序对复杂调查数据进行MI分析的使用。第1节包含引言。第2节包括一些必要的方法背景。第3节展示了一个具有任意缺失数据模式的MI示例。第四部分对全文进行了总结和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信