{"title":"Deep Brain Stimulator (DBS) Artifact in the EEG of a Pediatric Patient.","authors":"Jennifer V Gettings, Robert C Stowe","doi":"10.1177/15500594231194958","DOIUrl":null,"url":null,"abstract":"<p><p>We report the first case of deep brain stimulator (DBS) artifact in the EEG of a pediatric patient. Our case is a 7-year-old male with bilateral globus pallidus interna (GPi) DBS for whom the EEG recorded a rhythmic 7.5 Hz theta activity on EEG related to DBS artifact. This artifact was also appreciated as a monochromatic invariable frequency band over 7.5 Hz on density spectral array (DSA). This rhythmic artifact may mimic an ictal pattern and should be recognized as artifact in order to avoid unnecessary treatment with anti-seizure medications (ASM).</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":" ","pages":"572-575"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594231194958","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We report the first case of deep brain stimulator (DBS) artifact in the EEG of a pediatric patient. Our case is a 7-year-old male with bilateral globus pallidus interna (GPi) DBS for whom the EEG recorded a rhythmic 7.5 Hz theta activity on EEG related to DBS artifact. This artifact was also appreciated as a monochromatic invariable frequency band over 7.5 Hz on density spectral array (DSA). This rhythmic artifact may mimic an ictal pattern and should be recognized as artifact in order to avoid unnecessary treatment with anti-seizure medications (ASM).
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.